0 attempts
0% avg
Part A:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[v_{1} = \sqrt{2gh}\] | The speed of the ball just after it first bounces off the plane at \(P_1\) is the same as it was before the bounce due to energy conservation. The initial speed when it contacts the plane is derived from potential energy being converted into kinetic energy. |
Part B:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\Delta y = -\frac{1}{2} g t^{2}\] | The vertical displacement \(\Delta y\) as the ball travels in projectile motion is given by this equation. |
| 2 | \[\Delta x = \sqrt{2gh} \cdot t\] | The horizontal displacement \(\Delta x\) as the ball travels horizontally with initial velocity \(v_{x} = \sqrt{2gh}\). |
| 3 | \[-\frac{1}{2} g t^{2} = -\sqrt{2gh} \cdot t\] | The condition for the ball to land on the 45-degree inclined plane again is \(\Delta y = -\Delta x\). |
| 4 | \[t = \frac{2\sqrt{2gh}}{g}\] | Solving the above equation for time \(t\), which is the time of flight between \(P_1\) and \(P_2\). |
Part C:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[x = \sqrt{2gh} \cdot \frac{2\sqrt{2gh}}{g} = 4h\] | The horizontal position \(x\) relative to \(P_1\) at time \(t\). |
| 2 | \[y = -\frac{1}{2} g \left(\frac{2\sqrt{2gh}}{g}\right)^{2} = -4h\] | The vertical position \(y\) relative to \(P_1\) at time \(t\). |
| 3 | \[L = \sqrt{(4h)^{2} + (-4h)^{2}} = 4\sqrt{2}h\] | Calculate the distance \(L\) along the plane from \(P_1\) to \(P_2\). |
Part D:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[v_{x} = \sqrt{2gh}\] | The horizontal velocity component \(v_{x}\) just before striking the plane at \(P_2\). |
| 2 | \[v_{y} = -g \cdot \frac{2\sqrt{2gh}}{g} = -2\sqrt{2gh}\] | The vertical velocity component \(v_{y}\) just before striking the plane at \(P_2\). |
| 3 | \[v_{2} = \sqrt{(\sqrt{2gh})^{2} + (-2\sqrt{2gh})^{2}} = \sqrt{10gh}\] | Calculate the speed \(v_{2}\) of the ball just before it strikes the plane at \(P_2\). |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
Why do you need to “pump” your legs when you begin swinging on a park swing?
A spring with a spring constant of \( 50. \) \( \text{N/m} \) is hanging from a stand. A second spring with a spring constant of \( 100. \) \( \text{N/m} \) is hanging from the first spring. How far do they stretch if a \( 0.50 \) \( \text{kg} \) mass is hung from the bottom spring?
A force \(F\) is exerted by a broom handle on the head of a broom, which has a mass \(m\). The handle is at an angle \(\theta\) to the horizontal. The work done by the force on the head of the broom as it moves a distance \(d\) across a horizontal floor is
Two cannonballs, A and B, are fired from the ground with identical initial speeds, but with \( \theta_A \) larger than \( \theta_B \).
A \( 0.30 \text{-kg} \) mass is suspended on a spring. In equilibrium the mass stretches the spring \( 2.0 \) \( \text{cm} \) downward. The mass is then pulled an additional distance of \( 1.0 \) \( \text{cm} \) down and released from rest. Write down its equation of motion.
A linear spring of force constant \( k \) is used in a physics lab experiment. A block of mass \( m \) is attached to the spring and the resulting frequency, \( f \), of the simple harmonic oscillations is measured. Blocks of various masses are used in different trials, and in each case, the corresponding frequency is measured and recorded. If \( f^{2} \) is plotted versus \( \frac{1}{m} \), the graph will be a straight line with slope
A rocket of mass \( m \) is launched with kinetic energy \( K_0 \), from the surface of the Earth. How much less kinetic energy does the rocket have at an altitude of two Earth radii? Give your answer in terms of the gravitational constant \( G \), the mass of the Earth \( m_E \), the radius of the Earth \( R_E \), and the mass of the rocket?
A simple pendulum consists of a sphere tied to the end of a string of negligible mass. The sphere is pulled back until the string is horizontal and then released from rest. Assume the gravitational potential energy is zero when the sphere is at its lowest point.
What angle will the string make with the horizontal when the kinetic energy and the potential energy of the sphere-Earth system are equal?

A particle of mass \(m\) slides down a fixed, frictionless sphere of radius \(R\), starting from rest at the top.
In terms of \(m\), \(g\), \(R\), and \(\theta\), determine each of the following for the particle while it is sliding on the sphere.
Find the escape speed from a planet of mass \(6.89 \times 10^{25} \, \text{kg}\) and radius \(6.2 \times 10^{6} \, \text{m}\).
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?