0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( F_{\text{net}} = m_{4}a \) | The net force acting on the \(4 \, \text{kg}\) block is equal to its mass times its acceleration. |
2 | \( F_{\text{gravity}} = m_{4}g \) | The force of gravity acting on the \(4 \, \text{kg}\) block is equal to its mass times the acceleration due to gravity \(g\). |
3 | \( F_{\text{net}} = m_{4}g – T \) | The net force acting on the \(4 \, \text{kg}\) block is the gravitational force minus the tension in the string. |
4 | \( m_{4}a = m_{4}g – T \) | Substitute the net force into Newton’s second law. |
5 | \( T = m_{1}g + m_{1}a + m_{2}g + m_{2}a \) | The tension in the string also depends on the forces acting on the \(1.0\, \text{kg}\) and \(2.0 \, \text{kg}\) blocks. |
6 | \( T = m_{1}(g + a) + m_{2}(g + a) \) | Combine the tensions for the \(1.0 \, \text{kg}\) and \(2.0 \, \text{kg}\) blocks since they share the same strings. |
7 | \( m_{4}a = m_{4}g – \left[m_{1}(g + a) + m_{2}(g + a)\right] \) | Substitute the tension \(T\) from step 6 into the equation from step 4. |
8 | \( 4a = 4g – (1 + 2)(g + a) \) | Substitute \(m_{4} = 4\, \text{kg}\), \(m_{1} = 1\, \text{kg}\), and \(m_{2} = 2\, \text{kg}\). |
9 | \( 4a = 4g – 3(g + a) \) | Combine the masses for the \(1.0 \, \text{kg}\) and \(2.0 \, \text{kg}\) blocks. |
10 | \( 4a = 4g – 3g -3a \) | Distribute the 3 to both terms. |
11 | \( 7a = g \) | Combine like terms to isolate \(a\). |
12 | \( a = \frac{g}{7} \approx \frac{9.8\, \text{m/s}^2}{7} \approx 1.4\, \text{m/s}^2 \) | Solve for \(a\), the acceleration of the \(4 \, \text{kg}\) block. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(T = m_4 g – m_4 a\) | The tension in the string is the gravitational force on the \(4 \, \text{kg}\) block minus the force due to its acceleration. |
2 | \(T = 4 \times 9.8 – 4 \times 1.4\) | Substitute \(m_4 = 4\, \text{kg}\), \(g = 9.8\, \text{m/s}^2\), and \(a = 1.4\, \text{m/s}^2\). |
3 | \(T = 39.2 – 5.6\) | Calculate the products. |
4 | \( T = 33.6 \, \text{N} \) | Final value for the tension in the string supporting the \(4 \, \text{kg}\) block. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( T_1 = m_1 (g + a) \) | The tension in the string is the gravitational force on the \(1 \, \text{kg}\) block plus the force due to its acceleration. |
2 | \( T_1 = 1 \times (9.8 + 1.4) \) | Substitute \(m_1 = 1\, \text{kg}\), \(g = 9.8\, \text{m/s}^2\), and \(a = 1.4\, \text{m/s}^2\). |
3 | \( T_1 = 1 \times 11.2 \) | Combine the terms inside the parentheses. |
4 | \( T_1 = 11.2 \, \text{N} \) | Final value for the tension in the string connected to the \(1 \, \text{kg}\) block. |
Just ask: "Help me solve this problem."
A \(1 \, \text{kg}\) mass and an unknown mass \(M\) hang on opposite sides of a pulley suspended from the ceiling. When the masses are released, \(M\) accelerates downward at \(5 \, \text{m/s}^2\). Find the value of \(M\).
Find the escape speed from a planet of mass \(6.89 \times 10^{25} \, \text{kg}\) and radius \(6.2 \times 10^{6} \, \text{m}\).
A snowboarder starts from rest and slides down a \(32^\circ\) incline that’s \(75 \, \text{m}\) long.
A \(1509 \, \text{g}\) wood block is being pulled by the force meter at a constant velocity. Using the graph above, find:
A box rests on the (frictionless) bed of a truck. The truck driver starts the truck and accelerates forward. The box immediately starts to slide toward the rear of the truck bed.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?