0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| (a) | \[\alpha = \frac{\Delta\omega}{\Delta t}=\frac{-30-60}{6-2}=\frac{-90}{4}=-22.5\,\text{rad\,/s}^2\] | The interval from \(t=2\,\text{s}\) to \(t=6\,\text{s}\) is a straight line, so the slope (constant) gives the instantaneous angular acceleration at any time in that portion, including \(t=4\,\text{s}.\) |
| (b) | \[v=r\,\omega = 0.25\,\text{m}\times 60\,\text{rad\,/s}=15\,\text{m\,/s}\] | At \(t=1\,\text{s}\) the graph is flat at \(\omega = 60\,\text{rad\,/s}.\) Linear (rim) speed is \(v=r\omega.\) |
| (c) | \[\Delta\theta_{0\!\to 2}=\omega\,\Delta t = 60\,\text{rad\,/s}\times 2\,\text{s}=120\,\text{rad}\] | From 0–2 s the angular velocity is constant, so the area under the \(\omega\)-vs-\(t\) graph (a rectangle) is \(\omega\Delta t.\) |
| (d) | \[\omega_f = \omega_i + \alpha\,\Delta t = 60 + (-22.5)(2)=15\,\text{rad\,/s}\] \[\Delta\theta_{2\!\to 4}=\tfrac12(\omega_i+\omega_f)\,\Delta t = \tfrac12(60+15)\times 2 = 75\,\text{rad}\] |
The segment 2–4 s lies on the linear portion with constant \(\alpha.\) Use kinematics (or trapezoid area) with \(\omega_i=60\,\text{rad\,/s}\) and \(\omega_f=15\,\text{rad\,/s}.\) |
| (e) | \[\begin{aligned} \Delta\theta_{0\!\to 2}&=120\\[4pt] \Delta\theta_{2\!\to 6}&=\tfrac12(60+(-30))(4)=60\\[4pt] \Delta\theta_{6\!\to 8}&=(-30)(2)=-60\\[4pt] \Delta\theta_{8\!\to 10}&=\tfrac12(-30+0)(2)=-30\\[4pt] \theta_{\text{total}}&=120+60-60-30=90\,\text{rad} \end{aligned}\] |
Sum the signed areas (trapezoids/rectangles) for each time interval. Positive areas correspond to counter-clockwise rotation; negative areas to clockwise. |
| (f) | \[\Delta x = r\,\theta_{\text{total}} = 0.25\,\text{m}\times 90\,\text{rad}=22.5\,\text{m}\] | For rolling without slipping, the center of mass translates a linear distance equal to \(r\,\Delta\theta.\) |
| (g) | \[a_{\text{tan}} = r\,|\alpha| = 0.25\,\text{m}\times 22.5\,\text{rad\,/s}^2 = 5.6\,\text{m\,/s}^2\] | Magnitude of tangential acceleration is the product of radius and magnitude of angular acceleration at \(t=4\,\text{s}.\) |
| (h) | \[a_{\text{tan}} = r\,\alpha = 0.25\times 0 = 0\,\text{m\,/s}^2\] \[v = r\omega = 0.25\times 60 = 15\,\text{m\,/s}\quad\Rightarrow\quad a_{c}=\frac{v^2}{r}=\frac{15^2}{0.25}=900\,\text{m\,/s}^2\] |
At \(t=1\,\text{s}\) the graph is flat, so \(\alpha=0\Rightarrow a_{\text{tan}}=0.\) Centripetal acceleration depends on instantaneous speed: \(a_c = v^2/r.\) |
Just ask: "Help me solve this problem."
A uniform ladder with mass \( m_2 \) and length \( L \) rests against a smooth wall. A do-it-yourself enthusiast of mass \( m_1 \) stands on the ladder a distance \( d \) from the bottom (measured along the ladder). The ladder makes an angle \( \theta \) with the ground. There is no friction between the wall and the ladder, but there is a frictional force of magnitude \( f \) between the floor and the ladder. \( N_1 \) is the magnitude of the normal force exerted by the wall on the ladder, and \( N_2 \) is the magnitude of the normal force exerted by the ground on the ladder. Throughout the problem, consider counterclockwise torques to be positive.
Why are doorknobs located on the side of the door opposite the hinges?
A solid ball and a cylinder roll down an inclined plane. Which reaches the bottom first?
A disk, a hoop, and a solid sphere are released at the same time at the top of an inclined plane. They are all uniform and roll without slipping. In what order do they reach the bottom?
\( \text{Solid sphere: } I = \frac{2}{5}mR^2, \quad \text{Solid disk: } I = \frac{1}{2}mR^2, \quad \text{Hoop: } I = mR^2 \)

A disk of radius \( R = 0.5 \) \( \text{cm} \) rests on a flat, horizontal surface such that frictional forces are considered to be negligible. Three forces of unknown magnitude are exerted on the edge of the disk, as shown in the figure. Which of the following lists the essential measuring devices that, when used together, are needed to determine the change in angular momentum of the disk after a known time of \( 5.0 \) \( \text{s} \)?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?