0 attempts
0% avg
UBQ Credits
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[ mgh = \frac{1}{2}mv_x^2 + \frac{1}{2}I\left(\frac{v_x}{R}\right)^2 \] | Apply energy conservation for rolling without slipping. The gravitational potential energy \(mgh\) converts to translational kinetic energy \(\frac{1}{2}mv_x^2\) and rotational kinetic energy \(\frac{1}{2}I\omega^2\) with the no-slip condition \(\omega=\frac{v_x}{R}\). |
2 | \[ mgh = \frac{1}{2}mv_x^2\left(1+\frac{I}{mR^2}\right) \] | Substitute \(\omega=\frac{v_x}{R}\) and factor out \(\frac{1}{2}mv_x^2\) to combine the terms into a single expression. |
3 | \[ v_x^2 = \frac{2gh}{1+\frac{I}{mR^2}} \] | Solve for the translational speed \(v_x\) in terms of the moment of inertia factor \(\frac{I}{mR^2}\). |
4 | \[ \text{For a solid sphere: } \frac{I}{mR^2}=\frac{2}{5} \quad\Rightarrow\quad v_{x,\text{sphere}}^2=\frac{2gh}{1+\frac{2}{5}}=\frac{10gh}{7} \] | Substitute the moment of inertia for a solid sphere \(I=\frac{2}{5}mR^2\), leading to a higher translational speed. |
5 | \[ \text{For a solid cylinder: } \frac{I}{mR^2}=\frac{1}{2} \quad\Rightarrow\quad v_{x,\text{cylinder}}^2=\frac{2gh}{1+\frac{1}{2}}=\frac{4gh}{3} \] | Substitute the moment of inertia for a solid cylinder \(I=\frac{1}{2}mR^2\). Its greater inertia compared to the sphere reduces its translational speed. |
6 | \[ \text{For a hollow pipe: } \frac{I}{mR^2}=1 \quad\Rightarrow\quad v_{x,\text{pipe}}^2=\frac{2gh}{1+1}=gh \] | Substitute the moment of inertia for a hollow pipe \(I=mR^2\). The high inertia value further reduces the translational speed. |
7 | \[ \frac{10gh}{7} > \frac{4gh}{3} > gh \] | Compare the expressions for \(v_x^2\): The solid sphere has the largest value, so it reaches the bottom first. The cylinder and pipe are slower because more energy goes into rotation. |
8 | \[ \boxed{(a)\;\text{Sphere}} \] | The sphere reaches the bottom first. The cylinder and pipe are slower due to their higher moments of inertia; hence, they devote a larger portion of the energy to rotation. |
Just ask: "Help me solve this problem."
What is the net torque acting on the pivot supporting a 10-kilogram beam 2 meters long as shown above? Assume that the positive direction is clockwise.
A system consists of two small disks, of masses \( m \) and \( 2m \), attached to ends of a rod of negligible mass of length \( 3x \). The rod is free to turn about a vertical axis through point \( P \). The first mass, \( m \), is located \( x \) away from point \( P \), and therefore the other mass, of \( 2m \), is \( 2x \) from point \( P \). The two disks rest on a rough horizontal surface; the coefficient of friction between the disks and the surface is \( \mu \). At time \( t = 0 \), the rod has an initial counterclockwise angular velocity \( \omega_i \) about \( P \). The system is gradually brought to rest by friction.
Derive expressions for the following quantities in terms of \( \mu \), \( m \), \( x \), \( g \), and \( \omega_i \).
Select all that applies. If a constant net torque is applied to an object, that object will
A disk, a hoop, and a solid sphere are released at the same time at the top of an inclined plane. They are all uniform and roll without slipping. In what order do they reach the bottom?
\( \text{Solid sphere: } I = \frac{2}{5}mR^2, \quad \text{Solid disk: } I = \frac{1}{2}mR^2, \quad \text{Hoop: } I = mR^2 \)
Which of the following must be zero if an object is spinning at a constant rate? There may be more than one right answer.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.