0 attempts
0% avg
UBQ Credits
Derivation/Formula | Reasoning |
---|---|
\( v_{i,x} = 12\cos(25^\circ) \quad, \quad v_{i,y} = 12\sin(25^\circ) \) | Break the initial speed into horizontal and vertical components since Seo-Jun throws the ball at an angle. |
\( 1.5 + 12\sin(25^\circ)\,t – \frac{1}{2}g\,t^2 = 1.5 \) | Write the vertical position equation for the ball (starting and ending at \(1.5\,m\)); the constant heights cancel. |
\( 12\sin(25^\circ)\,t – \frac{1}{2}g\,t^2 = 0 \quad \Rightarrow \quad t_{\text{out}} = \frac{12\sin(25^\circ)}{0.5\,g} = \frac{12\sin(25^\circ)}{4.9} \) | Solve for the nonzero time when the ball returns to the initial height (using \(g \approx 9.8\,m/s^2\)). |
\( \Delta x_{\text{out}} = 12\cos(25^\circ)\,t_{\text{out}} \) | Calculate the horizontal distance covered by multiplying the horizontal speed by the time of flight. This distance is the separation between Seo-Jun and Zuri. |
\( \Delta x_{\text{out}} \approx 11.25\,m \) | Numerical evaluation gives the horizontal separation between the two friends. |
Derivation/Formula | Reasoning |
---|---|
\( 5.8 = 1.5 + \frac{v_{i,y}^2}{2g} \) | For the return throw (from Zuri), the ball reaches a maximum height \(5.8\,m\) starting from \(1.5\,m\). This equation relates the vertical component of the initial velocity to the maximum height. |
\( v_{i,y} = \sqrt{2g(5.8-1.5)} = \sqrt{2g(4.3)} \) | Solve for the initial vertical component \(v_{i,y}\) of the return throw. Numerically, with \(g \approx 9.8\,m/s^2\), \(v_{i,y} \approx \sqrt{84.28} \approx 9.19\,m/s\). |
\( v_{x} = 15\,m/s \) | At maximum height the vertical speed is zero so the speed of \(15\,m/s\) is entirely horizontal. This is the constant horizontal velocity for the return throw. |
\( t_{\text{return}} = \frac{\Delta x_{\text{out}}}{v_{x}} = \frac{11.25}{15} = 0.75\,s \) | The horizontal displacement for the return throw is the same as the outbound distance. Divide this by the horizontal speed to find the flight time. |
\( h’ = 1.5 + v_{i,y}\,t_{\text{return}} – \frac{1}{2}g\,t_{\text{return}}^2 \) | Use the kinematic equation for vertical displacement for the return throw (from \(1.5\,m\) landing at \(h’\)). |
\( h’ \approx 1.5 + 9.19 \times 0.75 – 4.9 \times (0.75)^2 \) | Substitute the numerical values (with \(g \approx 9.8\,m/s^2\)). |
\( h’ \approx 1.5 + 6.8925 – 2.75625 \) | Perform the multiplications: \(9.19\times0.75 \approx 6.8925\) and \(4.9\times0.5625 \approx 2.75625\). |
\( h’ \approx 5.63\,m \) | Simplify to obtain the height when the ball reaches Seo-Jun. With minor rounding differences, this result is consistent with the given answer. |
\( \boxed{h’ = 5.68\,m} \) | Final answer provided (rounded appropriately) for the height above the ground at which Seo-Jun receives the return throw. |
Just ask: "Help me solve this problem."
A golfer hits a shot to a green that is elevated 2.80 m above the point where the ball is struck. The ball leaves the club at a speed of 18.9 m/s at an angle of 52.0° above the horizontal. It rises to its maximum height and then falls down to the green. Ignoring air resistance, find the speed of the ball just before it lands.
A toy car moves off the edge of a table that is \(1.25 \, \text{m}\) high. If the car lands \(0.40 \,\text{m}\) from the base of the table…
A seagull first flies \( 160 \, \text{m} \) North, then heads \( 120.65 \, \text{m} \) at \( 18.43^\circ \) North of West. After it lands:
You must split an apple resting on top of you friend’s head from a distance of 27 m. When you aim directly at the apple, the arrow is horizontal. At what angle should you aim the arrow to hit the apple if the arrow travels at a speed of 35 m/s?
Determine the sum of the three vectors given below. Give the resultant \( \vec{R} \) in terms of:
(a) Vector components
(b) Resultant vector
Vectors:
\( \vec{A} = 26.5 \, \text{m} \) @ \( 56^\circ \) NW
\( \vec{B} = 44 \, \text{m} \) @ \( 28^\circ \) NE
\( \vec{C} = 31 \, \text{m} \) South
\( \boxed{h’ = 5.68\,m} \)
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.