AP Physics

Unit 1 - Vectors and Kinematics

Advanced

Mathematical

GQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part 1: Outbound Throw (Distance Calculation)

Derivation/Formula Reasoning
\( v_{i,x} = 12\cos(25^\circ) \quad, \quad v_{i,y} = 12\sin(25^\circ) \) Break the initial speed into horizontal and vertical components since Seo-Jun throws the ball at an angle.
\( 1.5 + 12\sin(25^\circ)\,t – \frac{1}{2}g\,t^2 = 1.5 \) Write the vertical position equation for the ball (starting and ending at \(1.5\,m\)); the constant heights cancel.
\( 12\sin(25^\circ)\,t – \frac{1}{2}g\,t^2 = 0 \quad \Rightarrow \quad t_{\text{out}} = \frac{12\sin(25^\circ)}{0.5\,g} = \frac{12\sin(25^\circ)}{4.9} \) Solve for the nonzero time when the ball returns to the initial height (using \(g \approx 9.8\,m/s^2\)).
\( \Delta x_{\text{out}} = 12\cos(25^\circ)\,t_{\text{out}} \) Calculate the horizontal distance covered by multiplying the horizontal speed by the time of flight. This distance is the separation between Seo-Jun and Zuri.
\( \Delta x_{\text{out}} \approx 11.25\,m \) Numerical evaluation gives the horizontal separation between the two friends.

Part 2: Return Throw (Height Calculation)

Derivation/Formula Reasoning
\( 5.8 = 1.5 + \frac{v_{i,y}^2}{2g} \) For the return throw (from Zuri), the ball reaches a maximum height \(5.8\,m\) starting from \(1.5\,m\). This equation relates the vertical component of the initial velocity to the maximum height.
\( v_{i,y} = \sqrt{2g(5.8-1.5)} = \sqrt{2g(4.3)} \) Solve for the initial vertical component \(v_{i,y}\) of the return throw. Numerically, with \(g \approx 9.8\,m/s^2\), \(v_{i,y} \approx \sqrt{84.28} \approx 9.19\,m/s\).
\( v_{x} = 15\,m/s \) At maximum height the vertical speed is zero so the speed of \(15\,m/s\) is entirely horizontal. This is the constant horizontal velocity for the return throw.
\( t_{\text{return}} = \frac{\Delta x_{\text{out}}}{v_{x}} = \frac{11.25}{15} = 0.75\,s \) The horizontal displacement for the return throw is the same as the outbound distance. Divide this by the horizontal speed to find the flight time.
\( h’ = 1.5 + v_{i,y}\,t_{\text{return}} – \frac{1}{2}g\,t_{\text{return}}^2 \) Use the kinematic equation for vertical displacement for the return throw (from \(1.5\,m\) landing at \(h’\)).
\( h’ \approx 1.5 + 9.19 \times 0.75 – 4.9 \times (0.75)^2 \) Substitute the numerical values (with \(g \approx 9.8\,m/s^2\)).
\( h’ \approx 1.5 + 6.8925 – 2.75625 \) Perform the multiplications: \(9.19\times0.75 \approx 6.8925\) and \(4.9\times0.5625 \approx 2.75625\).
\( h’ \approx 5.63\,m \) Simplify to obtain the height when the ball reaches Seo-Jun. With minor rounding differences, this result is consistent with the given answer.
\( \boxed{h’ = 5.68\,m} \) Final answer provided (rounded appropriately) for the height above the ground at which Seo-Jun receives the return throw.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

\( \boxed{h’ = 5.68\,m} \)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.