New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

AP Physics

Unit 7 - Simple Harmonic Motion

FRQ
Mathematical
Advanced

Pro Tier

Unlimited Grading Credits, Explanations, and AI Assist

0 attempts

0% avg

Explanation 0
0

Part (a): Frequency

Derivation/Formula Reasoning
\[ \omega = \sqrt{\frac{k}{m}} \] This is the formula for the angular frequency of a mass-spring system, where \(k=20.0\,\text{N/m}\) and \(m=1.5\,\text{kg}\).
\[ \omega = \sqrt{\frac{20.0}{1.5}} \approx 3.65\,\text{rad/s} \] Substitute the given values to calculate \(\omega\).
\[ f = \frac{\omega}{2\pi} \approx \frac{3.65}{6.28} \approx 0.582\,\text{Hz} \] Convert the angular frequency to the ordinary frequency using \(f=\omega/(2\pi)\).

Part (b): Maximum Speed

Derivation/Formula Reasoning
\[ v_{\text{max}} = A\,\omega \] The maximum speed in simple harmonic motion is the product of the amplitude \(A\) and the angular frequency \(\omega\).
\[ v_{\text{max}} = 0.10\,\text{m} \times 3.65\,\text{rad/s} \approx 0.365\,\text{m/s} \] Substitute the amplitude \(A=0.10\,\text{m}\) and the computed \(\omega\) into the formula.
\[ \text{Occurs at } x=0 \] The maximum speed occurs at the equilibrium position where the displacement is zero.

Part (c): Maximum Acceleration

Derivation/Formula Reasoning
\[ a_{\text{max}} = \omega^2\,A \] The maximum acceleration in simple harmonic motion is given by \(a_{\text{max}}=\omega^2 A\).
\[ a_{\text{max}} = (3.65\,\text{rad/s})^2 \times 0.10\,\text{m} \approx 1.33\,\text{m/s}^2 \] Substitute \(\omega \approx 3.65\,\text{rad/s}\) and \(A = 0.10\,\text{m}\) into the equation.
\[ \text{Occurs at } x = \pm 0.10\,\text{m} \] The magnitude of acceleration is maximum at the extreme positions (\(x=\pm A\)) of the oscillation.

Part (d): Total Energy

Derivation/Formula Reasoning
\[ E = \frac{1}{2}\,k\,A^2 \] The total mechanical energy in a mass-spring system is stored as potential energy in the spring at maximum displacement.
\[ E = \frac{1}{2} \times 20.0\,\text{N/m} \times (0.10\,\text{m})^2 \] Substitute the given values \(k=20.0\,\text{N/m}\) and \(A=0.10\,\text{m}\) into the energy formula.
\[ E = 0.1\,\text{J} \] Simplify the expression to obtain the total energy of the system.

Part (e): Displacement Function

Derivation/Formula Reasoning
\[ x(t) = A\,\cos(\omega t + \phi) \] This is the general solution for the displacement in simple harmonic motion, where \(\phi\) is the phase constant.
\[ x(0) = A\,\cos(\phi) = 0.10\,\text{m} \] At \(t=0\), the mass is released from rest at \(x=0.10\,\text{m}\), which implies \(\phi = 0\) because \(\cos(0)=1\).
\[ x(t) = 0.10\,\text{m}\,\cos\Big(\sqrt{\frac{20.0}{1.5}}\,t\Big) \] Substitute \(A=0.10\,\text{m}\), \(\omega=\sqrt{\frac{20.0}{1.5}}\), and \(\phi=0\) into the general solution to obtain the displacement as a function of time.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

We'll help clarify entire units in one hour or less — guaranteed.

NEW AI Quiz Builder

Be the first to use our new Quiz platform to create and grade quizzes from scratch. Join the waitlist and we'll email you for early access.

Go Pro to remove ads + unlimited access to our AI learning tools.
  1. \(f = 0.582\,\text{Hz}\)
  2. \(\;v_{\text{max}} = 0.365\,\text{m/s}\;\text{ at } x=0\)
  3. \(\;a_{\text{max}} = 1.33\,\text{m/s}^2\;\text{ at } x=\pm0.10\,\text{m}\)
  4. \(\;E = 0.1\,\text{J}\)
  5. \(\;x(t)=0.10\,\cos\Big(\sqrt{\frac{20.0}{1.5}}\,t\Big)\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

Metric Prefixes

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!

Phy Pro

One price to unlock most advanced version of Phy across all our tools.

$11.99

per month

Billed Monthly. Cancel Anytime.

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.

Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.