0 attempts
0% avg
UBQ Credits
Derivation/Formula | Reasoning |
---|---|
\[ \omega = \sqrt{\frac{k}{m}} \] | This is the formula for the angular frequency of a mass-spring system, where \(k=20.0\,\text{N/m}\) and \(m=1.5\,\text{kg}\). |
\[ \omega = \sqrt{\frac{20.0}{1.5}} \approx 3.65\,\text{rad/s} \] | Substitute the given values to calculate \(\omega\). |
\[ f = \frac{\omega}{2\pi} \approx \frac{3.65}{6.28} \approx 0.582\,\text{Hz} \] | Convert the angular frequency to the ordinary frequency using \(f=\omega/(2\pi)\). |
Derivation/Formula | Reasoning |
---|---|
\[ v_{\text{max}} = A\,\omega \] | The maximum speed in simple harmonic motion is the product of the amplitude \(A\) and the angular frequency \(\omega\). |
\[ v_{\text{max}} = 0.10\,\text{m} \times 3.65\,\text{rad/s} \approx 0.365\,\text{m/s} \] | Substitute the amplitude \(A=0.10\,\text{m}\) and the computed \(\omega\) into the formula. |
\[ \text{Occurs at } x=0 \] | The maximum speed occurs at the equilibrium position where the displacement is zero. |
Derivation/Formula | Reasoning |
---|---|
\[ a_{\text{max}} = \omega^2\,A \] | The maximum acceleration in simple harmonic motion is given by \(a_{\text{max}}=\omega^2 A\). |
\[ a_{\text{max}} = (3.65\,\text{rad/s})^2 \times 0.10\,\text{m} \approx 1.33\,\text{m/s}^2 \] | Substitute \(\omega \approx 3.65\,\text{rad/s}\) and \(A = 0.10\,\text{m}\) into the equation. |
\[ \text{Occurs at } x = \pm 0.10\,\text{m} \] | The magnitude of acceleration is maximum at the extreme positions (\(x=\pm A\)) of the oscillation. |
Derivation/Formula | Reasoning |
---|---|
\[ E = \frac{1}{2}\,k\,A^2 \] | The total mechanical energy in a mass-spring system is stored as potential energy in the spring at maximum displacement. |
\[ E = \frac{1}{2} \times 20.0\,\text{N/m} \times (0.10\,\text{m})^2 \] | Substitute the given values \(k=20.0\,\text{N/m}\) and \(A=0.10\,\text{m}\) into the energy formula. |
\[ E = 0.1\,\text{J} \] | Simplify the expression to obtain the total energy of the system. |
Derivation/Formula | Reasoning |
---|---|
\[ x(t) = A\,\cos(\omega t + \phi) \] | This is the general solution for the displacement in simple harmonic motion, where \(\phi\) is the phase constant. |
\[ x(0) = A\,\cos(\phi) = 0.10\,\text{m} \] | At \(t=0\), the mass is released from rest at \(x=0.10\,\text{m}\), which implies \(\phi = 0\) because \(\cos(0)=1\). |
\[ x(t) = 0.10\,\text{m}\,\cos\Big(\sqrt{\frac{20.0}{1.5}}\,t\Big) \] | Substitute \(A=0.10\,\text{m}\), \(\omega=\sqrt{\frac{20.0}{1.5}}\), and \(\phi=0\) into the general solution to obtain the displacement as a function of time. |
Just ask: "Help me solve this problem."
A Christmas ornament made from a thin hollow glass sphere hangs from a thin wire of negligible mass. It is observed to oscillates with a frequency of \( 2.50 \) \( \text{Hz} \) in a city where \( g = 9.80 \) \( \text{m/s}^2 \). What is the radius of the ornament? The moment of inertia of the ornament is given by \( I = \frac{5}{3} mr^2 \).
If a small motor does 520 J of work to move a toy car 260 meters in a time of 37 seconds.
A simple pendulum consists of a sphere tied to the end of a string of negligible mass. The sphere is pulled back until the string is horizontal and then released from rest. Assume the gravitational potential energy is zero when the sphere is at its lowest point.
What angle will the string make with the horizontal when the kinetic energy and the potential energy of the sphere-Earth system are equal?
Two boxes are tied together by a string and are sitting at rest on a frictionless surface. Between the two boxes is a massless compressed spring. The string trying the two boxes is then cut and the spring expands, pushing the boxes apart. The box on the left has four times the mass of the box on the right.
A net force of \( 8.0 \) \( \text{N} \) accelerates a \( 4.0 \) \( \text{kg} \) body from rest to a speed of \( 5.0 \) \( \text{m s}^{-1} \). Which of the following is equal to the work done by the force?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.