0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ A_{BC} = \frac{\pi}{4} \times (0.6)^2 \] | Calculate the cross-sectional area of section BC using the diameter \( 600 \text{ mm} = 0.6 \text{ m} \). |
2 | \[ A_{BC} = 0.2827 \ \text{m}^2 \] | Evaluate the expression to get the area. |
3 | \[ Q_{BC} = A_{BC} \times v_{BC} \] | Use the formula for flow rate, \( Q = A \cdot v \). |
4 | \[ Q_{BC} = 0.2827 \times 1.2 \] | Substitute \( v_{BC} = 1.2 \ \text{m/s} \) into the equation. |
5 | \[ \boxed{Q_{BC} = 0.3393 \ \text{m}^3/\text{s}} \] | Calculate to find \( Q_{BC} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ Q_{AB} = Q_{BC} \] | Using the law of mass conservation, \( Q_{AB} = Q_{BC} \) since no other flows are present between A and C. |
2 | \[ \boxed{Q_{AB} = 0.3393 \ \text{m}^3/\text{s}} \] | \( Q_{BC} \) was calculated earlier as \( 0.3393 \ \text{m}^3/\text{s} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ A_{AB} = \frac{\pi}{4} \times (0.3)^2 \] | Calculate the cross-sectional area of section AB using \( 300 \text{ mm} = 0.3 \text{ m} \). |
2 | \[ A_{AB} = 0.0707 \ \text{m}^2 \] | Evaluate the expression for area. |
3 | \[ v_{AB} = \frac{Q_{AB}}{A_{AB}} \] | Rearrange the formula \( Q = A \cdot v \) to solve for \( v \). |
4 | \[ v_{AB} = \frac{0.3393}{0.0707} \] | Substitute \( Q_{AB} \) and \( A_{AB} \) into the equation. |
5 | \[ \boxed{v_{AB} = 4.8 \ \text{m/s}} \] | Evaluate to find \( v_{AB} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ Q_{CD} = \frac{Q_{AB}}{1.5} \] | From \( Q_{AB} = Q_{CD} + Q_{CE} \), solve for \( Q_{CD} \), knowing that \( Q_{CE} = .5Q_{CD} \). |
2 | \[ Q_{CD} = \frac{0.3393}{1.5} \] | Substitute \( Q_{AB} = 0.3393 \ \text{m}^3/\text{s} \). |
3 | \[ Q_{CD} = 0.2262 \ \text{m}^3/\text{s} \] | Calculate to find \( Q_{CD} \). |
4 | \[ A_{CD} = \frac{Q_{CD}}{v_{CD}} \] | Rearrange \( Q = A \cdot v \) to solve for \( A \). |
5 | \[ A_{CD} = \frac{0.2262}{1.4} \] | Substitute \( Q_{CD} \) and \( v_{CD} = 1.4 \ \text{m/s} \). |
6 | \[ A_{CD} = 0.1616 \ \text{m}^2 \] | Evaluation to find \( A_{CD} \). |
7 | \[ d_{CD} = \sqrt{\frac{4 \times A_{CD}}{\pi}} \] | Calculate the diameter from the area. |
8 | \[ d_{CD} = \sqrt{\frac{4 \times 0.1616}{\pi}} \] | Substitute \( A_{CD} \) into the equation. |
9 | \[ \boxed{d_{CD} = 0.454 \ \text{m}} \] | Calculate the diameter \( d_{CD} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ Q_{CE} = 0.5Q_{CD} \] | From given condition \( Q_{CE} = 0.5Q_{CD} \). |
2 | \[ Q_{CE} = 0.5 \times 0.2262 \] | Use previously calculated \( Q_{CD} \). |
3 | \[ Q_{CE} = 0.1131 \ \text{m}^3/\text{s} \] | Evaluate to find \( Q_{CE} \). |
4 | \[ A_{CE} = \frac{\pi}{4} \times (0.15)^2 \] | Calculate \( A_{CE} \) with \( 150 \text{ mm} = 0.15 \text{ m} \). |
5 | \[ A_{CE} = 0.0177 \ \text{m}^2 \] | Evaluate for \( A_{CE} \). |
6 | \[ v_{CE} = \frac{Q_{CE}}{A_{CE}} \] | Rearrange \( Q = A \cdot v \) to solve for \( v \). |
7 | \[ v_{CE} = \frac{0.1131}{0.0177} \] | Substitute \( Q_{CE} \) and \( A_{CE} \). |
8 | \[ \boxed{v_{CE} = 6.4 \ \text{m/s}} \] | Calculate \( v_{CE} \). |
Just ask: "Help me solve this problem."
How large must a heating duct be if air moving \( 3 \ \frac{\text{m}}{\text{s}} \) along it can replenish the air in a room of \( 300 \ \text{m}^3 \) volume every \( 15 \) minutes? Assume the air’s density remains constant.
A solid titanium sphere of radius \( 0.35 \) \( \text{m} \) has a density \( 4500 \) \( \text{kg/m}^3 \). It is held suspended completely underwater by a cable. What is the tension in the cable?
When the button of a trash compactor is pushed, a force of \( 350 \) \( \text{N} \) pushes down on a \( 1.3 \) \( \text{cm}^2 \) input piston, creating a force of \( 22,076 \) \( \text{N} \) to crush the trash. What is the area of the piston that crushes the trash?
A solid plastic cube with uniform density (side length = \(0.5\) \(\text{m}\)) of mass \(100\) \(\text{kg}\) is placed in a vat of fluid whose density is \(1200\) \(\text{kg/m}^3\). What fraction of the cube’s volume floats above the surface of the fluid?
A Venturi meter is a device used for measuring the speed of a fluid within a pipe. The drawing shows a gas flowing at a speed \( v_2 \) through a horizontal section of pipe with a cross-sectional area \( A_2 = 542 \) \( \text{cm}^2 \). The gas has a density of \( 1.35 \) \( \text{kg/m}^3 \). The Venturi meter has a cross-sectional area of \( A_1 = 215 \) \( \text{cm}^2 \) and has been substituted for a section of the larger pipe. The pressure difference between the two sections \( P_2 – P_1 = 145 \) \( \text{Pa} \).
\( Q_{AB} = 0.3393 \) \( \text{m}^3/\text{s} \)
\( v_{AB} = 4.8 \) \( \text{m/s} \)
\( Q_{BC} = 0.3393 \) \( \text{m}^3/\text{s} \)
\( d_{CD} = 0.454 \) \( \text{m} \) \( = 454 \) \( \text{mm} \)
\( v_{CE} = 6.4 \) \( \text{m/s} \)
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.