0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ A_{BC} = \frac{\pi}{4} \times (0.6)^2 \] | Calculate the cross-sectional area of section BC using the diameter \( 600 \text{ mm} = 0.6 \text{ m} \). |
| 2 | \[ A_{BC} = 0.2827 \ \text{m}^2 \] | Evaluate the expression to get the area. |
| 3 | \[ Q_{BC} = A_{BC} \times v_{BC} \] | Use the formula for flow rate, \( Q = A \cdot v \). |
| 4 | \[ Q_{BC} = 0.2827 \times 1.2 \] | Substitute \( v_{BC} = 1.2 \ \text{m/s} \) into the equation. |
| 5 | \[ \boxed{Q_{BC} = 0.3393 \ \text{m}^3/\text{s}} \] | Calculate to find \( Q_{BC} \). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ Q_{AB} = Q_{BC} \] | Using the law of mass conservation, \( Q_{AB} = Q_{BC} \) since no other flows are present between A and C. |
| 2 | \[ \boxed{Q_{AB} = 0.3393 \ \text{m}^3/\text{s}} \] | \( Q_{BC} \) was calculated earlier as \( 0.3393 \ \text{m}^3/\text{s} \). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ A_{AB} = \frac{\pi}{4} \times (0.3)^2 \] | Calculate the cross-sectional area of section AB using \( 300 \text{ mm} = 0.3 \text{ m} \). |
| 2 | \[ A_{AB} = 0.0707 \ \text{m}^2 \] | Evaluate the expression for area. |
| 3 | \[ v_{AB} = \frac{Q_{AB}}{A_{AB}} \] | Rearrange the formula \( Q = A \cdot v \) to solve for \( v \). |
| 4 | \[ v_{AB} = \frac{0.3393}{0.0707} \] | Substitute \( Q_{AB} \) and \( A_{AB} \) into the equation. |
| 5 | \[ \boxed{v_{AB} = 4.8 \ \text{m/s}} \] | Evaluate to find \( v_{AB} \). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ Q_{CD} = \frac{Q_{AB}}{1.5} \] | From \( Q_{AB} = Q_{CD} + Q_{CE} \), solve for \( Q_{CD} \), knowing that \( Q_{CE} = .5Q_{CD} \). |
| 2 | \[ Q_{CD} = \frac{0.3393}{1.5} \] | Substitute \( Q_{AB} = 0.3393 \ \text{m}^3/\text{s} \). |
| 3 | \[ Q_{CD} = 0.2262 \ \text{m}^3/\text{s} \] | Calculate to find \( Q_{CD} \). |
| 4 | \[ A_{CD} = \frac{Q_{CD}}{v_{CD}} \] | Rearrange \( Q = A \cdot v \) to solve for \( A \). |
| 5 | \[ A_{CD} = \frac{0.2262}{1.4} \] | Substitute \( Q_{CD} \) and \( v_{CD} = 1.4 \ \text{m/s} \). |
| 6 | \[ A_{CD} = 0.1616 \ \text{m}^2 \] | Evaluation to find \( A_{CD} \). |
| 7 | \[ d_{CD} = \sqrt{\frac{4 \times A_{CD}}{\pi}} \] | Calculate the diameter from the area. |
| 8 | \[ d_{CD} = \sqrt{\frac{4 \times 0.1616}{\pi}} \] | Substitute \( A_{CD} \) into the equation. |
| 9 | \[ \boxed{d_{CD} = 0.454 \ \text{m}} \] | Calculate the diameter \( d_{CD} \). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ Q_{CE} = 0.5Q_{CD} \] | From given condition \( Q_{CE} = 0.5Q_{CD} \). |
| 2 | \[ Q_{CE} = 0.5 \times 0.2262 \] | Use previously calculated \( Q_{CD} \). |
| 3 | \[ Q_{CE} = 0.1131 \ \text{m}^3/\text{s} \] | Evaluate to find \( Q_{CE} \). |
| 4 | \[ A_{CE} = \frac{\pi}{4} \times (0.15)^2 \] | Calculate \( A_{CE} \) with \( 150 \text{ mm} = 0.15 \text{ m} \). |
| 5 | \[ A_{CE} = 0.0177 \ \text{m}^2 \] | Evaluate for \( A_{CE} \). |
| 6 | \[ v_{CE} = \frac{Q_{CE}}{A_{CE}} \] | Rearrange \( Q = A \cdot v \) to solve for \( v \). |
| 7 | \[ v_{CE} = \frac{0.1131}{0.0177} \] | Substitute \( Q_{CE} \) and \( A_{CE} \). |
| 8 | \[ \boxed{v_{CE} = 6.4 \ \text{m/s}} \] | Calculate \( v_{CE} \). |
Just ask: "Help me solve this problem."
In a town’s water system, pressure gauges in still water at street level read \( 150 \) \( \text{kPa} \). If a pipeline connected to the system breaks and shoots water straight up, how high above the street does the water shoot?
A trash compactor pushes down with a force of \( 500 \) \( \text{N} \) on a \( 3 \) \( \text{cm}^2 \) input piston, causing a force of \( 30,000 \) \( \text{N} \) to crush the trash. What is the area of the output piston that crushes the trash?
Two objects labeled K and L have equal mass but densities \( 0.95D_o \) and \( D_o \), respectively. Each of these objects floats after being thrown into a deep swimming pool. Which is true about the buoyant forces acting on these objects?
Two paper cups are suspended by strings and hung near each other. They are separated by about \( 10 \) \( \text{cm} \). Explain what happens to the cups when you blow air between them. Hint: Do they remain still, moves away from each other or move towards each other?

The drawing above shows a spherical reservoir that contains \( 455,000 \) \( \text{kg} \) of water when full. The reservoir is vented to the atmosphere at the top. Assuming the reservoir is full and the diameter of the reservoir is much larger than any of the pipes on the ground.
\( Q_{AB} = 0.3393 \) \( \text{m}^3/\text{s} \)
\( v_{AB} = 4.8 \) \( \text{m/s} \)
\( Q_{BC} = 0.3393 \) \( \text{m}^3/\text{s} \)
\( d_{CD} = 0.454 \) \( \text{m} \) \( = 454 \) \( \text{mm} \)
\( v_{CE} = 6.4 \) \( \text{m/s} \)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?