0 attempts
0% avg
UBQ Credits
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[V_{\text{outer}} = \frac{4}{3}\pi (1.5)^3 \quad , \quad V_{\text{inner}} = \frac{4}{3}\pi r_i^3 \quad , \quad V_{\text{shell}} = \frac{4}{3}\pi\left(1.5^3 – r_i^3\right)\] | Calculate the volume of the full sphere (with outer radius \(1.5\) m) and the hollow part (inner radius \(r_i\)). Their difference gives the volume of titanium used in the shell. |
2 | \[\rho_{\text{Ti}}\,\frac{4}{3}\pi\left(1.5^3 – r_i^3\right) = \rho_{\text{water}}\,\frac{4}{3}\pi (1.5)^3\] | For neutral buoyancy, the mass of the titanium shell must equal the mass of the water displaced by the outer sphere. Here, \(\rho_{\text{Ti}}\) is the density of titanium and \(\rho_{\text{water}}\) is the density of water. |
3 | \[\rho_{\text{Ti}}\left(1.5^3 – r_i^3\right) = \rho_{\text{water}}\,(1.5)^3\] | Cancel the common factor \(\frac{4}{3}\pi\) from both sides of the equation. |
4 | \[1.5^3 – r_i^3 = \frac{\rho_{\text{water}}}{\rho_{\text{Ti}}}(1.5)^3\] | Rearrange the equation to isolate the term \(r_i^3\). |
5 | \[r_i^3 = (1.5)^3\left(1 – \frac{\rho_{\text{water}}}{\rho_{\text{Ti}}}\right)\] | Solve for \(r_i^3\) by subtracting and rearranging the terms. |
6 | \[r_i^3 = 3.375\left(1 – \frac{1000}{4500}\right) = 3.375\left(\frac{7}{9}\right) \approx 2.625\] | Substitute \(\rho_{\text{Ti}} \approx 4500\,\text{kg/m}^3\) and \(\rho_{\text{water}} \approx 1000\,\text{kg/m}^3\). Note that \((1.5)^3 = 3.375\) and \(1 – \frac{1000}{4500} = \frac{7}{9}\). |
7 | \[r_i = \sqrt[3]{2.625} \approx 1.38\,\text{m}\] | Take the cube root of \(r_i^3\) to obtain the inner radius needed for neutral buoyancy. |
8 | \[\boxed{r_i \approx 1.38\,\text{m}}\] | This is the final answer for the inner radius of the sphere. |
Just ask: "Help me solve this problem."
In the laboratory, you are given a cylindrical beaker containing a fluid and you are asked to determine the density \( \rho \) of the fluid. You are to use a spring of negligible mass and unknown spring constant \( k \) that is attached to a vertical stand.
Balsa wood with an average density of \( 130 \) \( \text{kg/m}^3 \), is floating in pure water. What percentage of the wood is submerged?
A helium-filled balloon is attached by a string of negligible mass to a small \(0.015 \ \text{kg}\) object that is just heavy enough to keep the balloon from rising. The total mass of the balloon, including the helium, is \(0.0050 \ \text{kg}\). The density of air is \(\rho_{\text{air}} = 1.29 \ \text{kg/m}^3\), and the density of helium is \(\rho_{\text{He}} = 0.179 \ \text{kg/m}^3\). The buoyant force on the \(0.015 \ \text{kg}\) object is small enough to be negligible.
A small rock sits at the bottom of a cup filled with water. The upward force exerted by the water on the rock is \( F_0 \). The water is then poured out and replaced by an oil that is \( \frac{3}{4} \) as dense as water, and the rock again sits at the bottom of the cup, completely under the oil. Which of the following expressions correctly represents the magnitude of the upward force exerted by the oil on the rock?
Caleb is filling up water balloons for the Physics Olympics balloon toss competition. Caleb sets a \( 0.50 \text{-kg} \) spherical water balloon on the kitchen table and notices that the bottom of the balloon flattens until the pressure on the bottom is reduced to \( 630 \frac{\text{N}}{\text{m}^2} \). What is the area of the flat spot on the bottom of the balloon?
\(r_i \approx 1.38\,\text{m}\)
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.