0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ F_\text{output} = mg \] | Calculate the force due to the mass of the rock. Here, \( m = 55.2 \, \text{kg} \) and \( g = 9.81 \, \text{m/s}^2 \). |
2 | \[ F_\text{output} = 55.2 \times 9.81 \] | Substitute values to find the force on the output plunger. |
3 | \[ F_\text{output} = 541.212 \, \text{N} \] | The force exerted by the rock on the output plunger. |
4 | \[ \frac{F_\text{input}}{A_\text{input}} = \frac{F_\text{output}}{A_\text{output}} \] | Use Pascal’s principle, which states that pressure is transmitted undiminished in an enclosed static fluid. |
5 | \[ F_\text{input} = \frac{F_\text{output} \times A_\text{input}}{A_\text{output}} \] | Rearrange to solve for the input force needed for equilibrium. |
6 | \[ F_\text{input} = \frac{541.212 \times 15}{65} \] | Substitute the area values: \( A_\text{input} = 15 \, \text{cm}^2 \) and \( A_\text{output} = 65 \, \text{cm}^2 \). |
7 | \[ F_\text{input} = 124.843 \, \text{N} \] | Calculate the force exerted on the input piston necessary for equilibrium. |
8 | \[ 124.843 = k_s \Delta x \] | Relate the input force to the spring constant \( k_s = 1250 \, \text{N/m} \) and the compression \( \Delta x \). |
9 | \[ \Delta x = \frac{124.843}{1250} \] | Solve for the compression of the spring. |
10 | \[ \Delta x = 0.0999 \, \text{m} \] | Convert the compression to meters. |
11 | \[ \boxed{9.99 \, \text{cm}} \] | Convert to centimeters and box the final answer. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ A_\text{input} \Delta y_\text{input} = A_\text{output} \Delta y_\text{output} \] | Use the principle of conservation of volume in the hydraulic system. |
2 | \[ 15 \times 22.0 = 65 \times \Delta y_\text{output} \] | Substitute \( \Delta y_\text{input} = 22.0 \, \text{cm} \) and the areas. |
3 | \[ 330 = 65 \times \Delta y_\text{output} \] | Calculate the product of the input area and the distance. |
4 | \[ \Delta y_\text{output} = \frac{330}{65} \] | Solve for the rise in the output plunger’s height. |
5 | \[ \Delta y_\text{output} = 5.077 \, \text{cm} \] | The final rise in the output plunger. |
6 | \[ \boxed{5.08 \, \text{cm}} \] | Box the final answer after rounding to two decimal places. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ P = P_0 + \rho g h \] | The absolute pressure at a depth \( h \) is given by this equation, where \( P_0 \) is atmospheric pressure. |
2 | \[ P = 101325 + 1000 \times 9.81 \times 0.85 \] | Substitute \( P_0 = 101325 \, \text{Pa} \), \( \rho = 1000 \, \text{kg/m}^3 \), \( g = 9.81 \, \text{m/s}^2 \), and the height \( h = 0.85 \, \text{m} \). |
3 | \[ P = 101325 + 8338.5 \] | Calculate the pressure contribution from the water column. |
4 | \[ P = 109663.5 \, \text{Pa} \] | Calculate the total absolute pressure at the bottom of the chamber. |
5 | \[ \boxed{109664 \, \text{Pa}} \] | Box the final answer after rounding to the nearest Pascal. |
Just ask: "Help me solve this problem."
Caleb is filling up water balloons for the Physics Olympics balloon toss competition. Caleb sets a \( 0.50 \text{-kg} \) spherical water balloon on the kitchen table and notices that the bottom of the balloon flattens until the pressure on the bottom is reduced to \( 630 \frac{\text{N}}{\text{m}^2} \). What is the area of the flat spot on the bottom of the balloon?
Water circulates throughout a house in a hot water heating system. If the water is pumped at a speed of \( 0.5 \) \( \frac{\text{m}}{\text{s}} \) through a \( 2 \) \( \text{cm} \) diameter pipe in the basement under a pressure of \( 3 \) \( \text{atm} \), what will be the flow speed and pressure in a \( 1.3 \) \( \text{cm} \) diameter pipe on the second floor \( 5 \) \( \text{m} \) above?
A trash compactor pushes down with a force of \( 500 \) \( \text{N} \) on a \( 3 \) \( \text{cm}^2 \) input piston, causing a force of \( 30,000 \) \( \text{N} \) to crush the trash. What is the area of the output piston that crushes the trash?
Johnny the auto mechanic is raising a \( 1200 \) \( \text{kg} \) car on her hydraulic lift so that she can work underneath. If the area of the input piston is \( 12 \) \( \text{cm}^2 \), while the output piston has an area of \( 700 \) \( \text{cm}^2 \), what force must be exerted on the input piston to lift the car?
In a carbonated drink dispenser, bubbles flow through a horizontal tube that gradually narrows in diameter. Assuming the change in height is negligible, which of the following best describes how the bubbles behave as they move from the wider section of the tube to the narrower section?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.