0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ F_\text{output} = mg \] | Calculate the force due to the mass of the rock. Here, \( m = 55.2 \, \text{kg} \) and \( g = 9.81 \, \text{m/s}^2 \). |
2 | \[ F_\text{output} = 55.2 \times 9.81 \] | Substitute values to find the force on the output plunger. |
3 | \[ F_\text{output} = 541.212 \, \text{N} \] | The force exerted by the rock on the output plunger. |
4 | \[ \frac{F_\text{input}}{A_\text{input}} = \frac{F_\text{output}}{A_\text{output}} \] | Use Pascal’s principle, which states that pressure is transmitted undiminished in an enclosed static fluid. |
5 | \[ F_\text{input} = \frac{F_\text{output} \times A_\text{input}}{A_\text{output}} \] | Rearrange to solve for the input force needed for equilibrium. |
6 | \[ F_\text{input} = \frac{541.212 \times 15}{65} \] | Substitute the area values: \( A_\text{input} = 15 \, \text{cm}^2 \) and \( A_\text{output} = 65 \, \text{cm}^2 \). |
7 | \[ F_\text{input} = 124.843 \, \text{N} \] | Calculate the force exerted on the input piston necessary for equilibrium. |
8 | \[ 124.843 = k_s \Delta x \] | Relate the input force to the spring constant \( k_s = 1250 \, \text{N/m} \) and the compression \( \Delta x \). |
9 | \[ \Delta x = \frac{124.843}{1250} \] | Solve for the compression of the spring. |
10 | \[ \Delta x = 0.0999 \, \text{m} \] | Convert the compression to meters. |
11 | \[ \boxed{9.99 \, \text{cm}} \] | Convert to centimeters and box the final answer. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ A_\text{input} \Delta y_\text{input} = A_\text{output} \Delta y_\text{output} \] | Use the principle of conservation of volume in the hydraulic system. |
2 | \[ 15 \times 22.0 = 65 \times \Delta y_\text{output} \] | Substitute \( \Delta y_\text{input} = 22.0 \, \text{cm} \) and the areas. |
3 | \[ 330 = 65 \times \Delta y_\text{output} \] | Calculate the product of the input area and the distance. |
4 | \[ \Delta y_\text{output} = \frac{330}{65} \] | Solve for the rise in the output plunger’s height. |
5 | \[ \Delta y_\text{output} = 5.077 \, \text{cm} \] | The final rise in the output plunger. |
6 | \[ \boxed{5.08 \, \text{cm}} \] | Box the final answer after rounding to two decimal places. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ P = P_0 + \rho g h \] | The absolute pressure at a depth \( h \) is given by this equation, where \( P_0 \) is atmospheric pressure. |
2 | \[ P = 101325 + 1000 \times 9.81 \times 0.85 \] | Substitute \( P_0 = 101325 \, \text{Pa} \), \( \rho = 1000 \, \text{kg/m}^3 \), \( g = 9.81 \, \text{m/s}^2 \), and the height \( h = 0.85 \, \text{m} \). |
3 | \[ P = 101325 + 8338.5 \] | Calculate the pressure contribution from the water column. |
4 | \[ P = 109663.5 \, \text{Pa} \] | Calculate the total absolute pressure at the bottom of the chamber. |
5 | \[ \boxed{109664 \, \text{Pa}} \] | Box the final answer after rounding to the nearest Pascal. |
Just ask: "Help me solve this problem."
In the laboratory, you are given a cylindrical beaker containing a fluid and you are asked to determine the density \( \rho \) of the fluid. You are to use a spring of negligible mass and unknown spring constant \( k \) that is attached to a vertical stand.
Alcohol has a specific gravity of \( 0.79 \). If a barometer consisting of an open-ended tube placed in a dish of alcohol is used at sea level, to what height in the tube will the alcohol rise?
Which of the following statements is an expression of the equation of continuity?
The radius of the left piston is \( 0.12 \) \( \text{m} \) and the radius of the right piston is \( 0.65 \) \( \text{m} \). If \( f \) were raised by \( 14 \) \( \text{N} \), how much would \( F \) need to be increased to maintain equilibrium?
Why do you float higher in salt water than in fresh water?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.