0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ F_\text{output} = mg \] | Calculate the force due to the mass of the rock. Here, \( m = 55.2 \, \text{kg} \) and \( g = 9.81 \, \text{m/s}^2 \). |
2 | \[ F_\text{output} = 55.2 \times 9.81 \] | Substitute values to find the force on the output plunger. |
3 | \[ F_\text{output} = 541.212 \, \text{N} \] | The force exerted by the rock on the output plunger. |
4 | \[ \frac{F_\text{input}}{A_\text{input}} = \frac{F_\text{output}}{A_\text{output}} \] | Use Pascal’s principle, which states that pressure is transmitted undiminished in an enclosed static fluid. |
5 | \[ F_\text{input} = \frac{F_\text{output} \times A_\text{input}}{A_\text{output}} \] | Rearrange to solve for the input force needed for equilibrium. |
6 | \[ F_\text{input} = \frac{541.212 \times 15}{65} \] | Substitute the area values: \( A_\text{input} = 15 \, \text{cm}^2 \) and \( A_\text{output} = 65 \, \text{cm}^2 \). |
7 | \[ F_\text{input} = 124.843 \, \text{N} \] | Calculate the force exerted on the input piston necessary for equilibrium. |
8 | \[ 124.843 = k_s \Delta x \] | Relate the input force to the spring constant \( k_s = 1250 \, \text{N/m} \) and the compression \( \Delta x \). |
9 | \[ \Delta x = \frac{124.843}{1250} \] | Solve for the compression of the spring. |
10 | \[ \Delta x = 0.0999 \, \text{m} \] | Convert the compression to meters. |
11 | \[ \boxed{9.99 \, \text{cm}} \] | Convert to centimeters and box the final answer. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ A_\text{input} \Delta y_\text{input} = A_\text{output} \Delta y_\text{output} \] | Use the principle of conservation of volume in the hydraulic system. |
2 | \[ 15 \times 22.0 = 65 \times \Delta y_\text{output} \] | Substitute \( \Delta y_\text{input} = 22.0 \, \text{cm} \) and the areas. |
3 | \[ 330 = 65 \times \Delta y_\text{output} \] | Calculate the product of the input area and the distance. |
4 | \[ \Delta y_\text{output} = \frac{330}{65} \] | Solve for the rise in the output plunger’s height. |
5 | \[ \Delta y_\text{output} = 5.077 \, \text{cm} \] | The final rise in the output plunger. |
6 | \[ \boxed{5.08 \, \text{cm}} \] | Box the final answer after rounding to two decimal places. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ P = P_0 + \rho g h \] | The absolute pressure at a depth \( h \) is given by this equation, where \( P_0 \) is atmospheric pressure. |
2 | \[ P = 101325 + 1000 \times 9.81 \times 0.85 \] | Substitute \( P_0 = 101325 \, \text{Pa} \), \( \rho = 1000 \, \text{kg/m}^3 \), \( g = 9.81 \, \text{m/s}^2 \), and the height \( h = 0.85 \, \text{m} \). |
3 | \[ P = 101325 + 8338.5 \] | Calculate the pressure contribution from the water column. |
4 | \[ P = 109663.5 \, \text{Pa} \] | Calculate the total absolute pressure at the bottom of the chamber. |
5 | \[ \boxed{109664 \, \text{Pa}} \] | Box the final answer after rounding to the nearest Pascal. |
Just ask: "Help me solve this problem."
A \(2\)-N force is used to push a small piston \(10\) \(\text{cm}\) downward in a simple hydraulic machine. If the opposite large piston rises by \(0.5\) \(\text{cm}\), what is the maximum weight the large piston can lift?
Two blocks of the same size are floating in a container of water. The first block is submerged \( 80\% \) while the second block is submerged by \( 20\% \) beneath the water. Which of the following is a correct statement about the two blocks?
A \( 50 \, \text{kg} \) person is sitting on a seesaw \( 1.2 \, \text{m} \) from the balance point. On the other side, a \( 70 \, \text{kg} \) person is balanced. How far from the balance point is the second person sitting?
A sample of an unknown material appears to weigh \( 285 \) \( \text{N} \) in air and \( 195 \) \( \text{N} \) when immersed in alcohol of specific gravity \( 0.700 \).
In the lab, a student is given a glass beaker filled with water with an ice cube of mass \( m \) and volume \( V_c \) floating in it.
The downward force of gravity on the ice cube has magnitude \( F_g \). The student pushes down on the ice cube with a force of magnitude \( F_P \) so that the cube is totally submerged. The water then exerts an upward buoyant force on the ice cube of magnitude \( F_B \). Which of the following is an expression for the magnitude of the acceleration of the ice cube when it is released?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) | Â |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
 | \(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.Â
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.Â
Submitting counts as 1 attempt.Â
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.Â
10 Free Credits To Get You StartedÂ
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.Â