AP Physics

Unit 8 - Fluids

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part (a): Spring Compression for Equilibrium

Step Derivation/Formula Reasoning
1 \[ F_\text{output} = mg \] Calculate the force due to the mass of the rock. Here, \( m = 55.2 \, \text{kg} \) and \( g = 9.81 \, \text{m/s}^2 \).
2 \[ F_\text{output} = 55.2 \times 9.81 \] Substitute values to find the force on the output plunger.
3 \[ F_\text{output} = 541.212 \, \text{N} \] The force exerted by the rock on the output plunger.
4 \[ \frac{F_\text{input}}{A_\text{input}} = \frac{F_\text{output}}{A_\text{output}} \] Use Pascal’s principle, which states that pressure is transmitted undiminished in an enclosed static fluid.
5 \[ F_\text{input} = \frac{F_\text{output} \times A_\text{input}}{A_\text{output}} \] Rearrange to solve for the input force needed for equilibrium.
6 \[ F_\text{input} = \frac{541.212 \times 15}{65} \] Substitute the area values: \( A_\text{input} = 15 \, \text{cm}^2 \) and \( A_\text{output} = 65 \, \text{cm}^2 \).
7 \[ F_\text{input} = 124.843 \, \text{N} \] Calculate the force exerted on the input piston necessary for equilibrium.
8 \[ 124.843 = k_s \Delta x \] Relate the input force to the spring constant \( k_s = 1250 \, \text{N/m} \) and the compression \( \Delta x \).
9 \[ \Delta x = \frac{124.843}{1250} \] Solve for the compression of the spring.
10 \[ \Delta x = 0.0999 \, \text{m} \] Convert the compression to meters.
11 \[ \boxed{9.99 \, \text{cm}} \] Convert to centimeters and box the final answer.

Part (b): Output Plunger Rise

Step Derivation/Formula Reasoning
1 \[ A_\text{input} \Delta y_\text{input} = A_\text{output} \Delta y_\text{output} \] Use the principle of conservation of volume in the hydraulic system.
2 \[ 15 \times 22.0 = 65 \times \Delta y_\text{output} \] Substitute \( \Delta y_\text{input} = 22.0 \, \text{cm} \) and the areas.
3 \[ 330 = 65 \times \Delta y_\text{output} \] Calculate the product of the input area and the distance.
4 \[ \Delta y_\text{output} = \frac{330}{65} \] Solve for the rise in the output plunger’s height.
5 \[ \Delta y_\text{output} = 5.077 \, \text{cm} \] The final rise in the output plunger.
6 \[ \boxed{5.08 \, \text{cm}} \] Box the final answer after rounding to two decimal places.

Part (c): Absolute Pressure at the Bottom

Step Derivation/Formula Reasoning
1 \[ P = P_0 + \rho g h \] The absolute pressure at a depth \( h \) is given by this equation, where \( P_0 \) is atmospheric pressure.
2 \[ P = 101325 + 1000 \times 9.81 \times 0.85 \] Substitute \( P_0 = 101325 \, \text{Pa} \), \( \rho = 1000 \, \text{kg/m}^3 \), \( g = 9.81 \, \text{m/s}^2 \), and the height \( h = 0.85 \, \text{m} \).
3 \[ P = 101325 + 8338.5 \] Calculate the pressure contribution from the water column.
4 \[ P = 109663.5 \, \text{Pa} \] Calculate the total absolute pressure at the bottom of the chamber.
5 \[ \boxed{109664 \, \text{Pa}} \] Box the final answer after rounding to the nearest Pascal.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. 9.99 \, \text{cm}
  2. 5.08 \, \text{cm}
  3. 109664 \, \text{Pa}

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.