0 attempts
0% avg
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[h_A = 15.0 \, \text{m}\] | The height of water above faucet A is given as 15.0 meters. |
| 2 | \[P_{gA} = \rho g h_A\] | The gauge pressure at a depth is calculated using the formula, where \(\rho\) is the density of water \(\approx 1000 \, \text{kg/m}^3\), and \(g\) is the acceleration due to gravity \( \approx 9.81 \, \text{m/s}^2 \). |
| 3 | \[P_{gA} = (1000)(9.81)(15)\] | Substitute the known values into the gauge pressure equation. |
| 4 | \[P_{gA} = 147150 \, \text{Pa}\] | Calculate the gauge pressure at faucet A. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[h_B = 15.0 – 7.30 \, \text{m}\] | Calculate the height of water above faucet B, given as 7.30 meters below the reservoir base. |
| 2 | \[h_B = 7.70 \, \text{m}\] | Find the effective height of water above faucet B. |
| 3 | \[P_{gB} = \rho g h_B\] | The gauge pressure at faucet B is calculated using the effective height \(h_B\). |
| 4 | \[P_{gB} = (1000)(9.81)(7.70)\] | Substitute the known values into the gauge pressure equation for B. |
| 5 | \[P_{gB} = 75537 \, \text{Pa}\] | Calculate the gauge pressure at faucet B. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[r = \frac{1.20}{2} \, \text{cm} = 0.006 \, \text{m}\] | Convert the diameter of the faucet to meters and find the radius. |
| 2 | \[A = \pi r^2 = \pi (0.006)^2\] | Calculate the cross-sectional area of the faucet. |
| 3 | \[A \approx 1.131 \times 10^{-4} \, \text{m}^2\] | Evaluate the area of the faucet. |
| 4 | \[v = \sqrt{\frac{2P_{gA}}{\rho}}\] | Calculate the velocity of water flowing out, using Bernoulli’s principle where \(P_{gA}\) is the gauge pressure at faucet A. |
| 5 | \[v = \sqrt{\frac{2(147150)}{1000}}\] | Substitute the gauge pressure and density of water to find velocity. |
| 6 | \[v \approx 17.14 \, \text{m/s}\] | Calculate the velocity of water at the faucet. |
| 7 | \[Q = A \times v = 1.131 \times 10^{-4} \times 17.14\] | Find the flow rate \(Q\) using the area and the velocity. |
| 8 | \[Q \approx 0.00194 \, \text{m}^3/\text{s}\] | Evaluate the flow rate of water through the faucet. |
| 9 | \[V_{container} = 5.00 \times 3.785 \times 10^{-3} \, \text{m}^3\] | Convert 5 gallons to cubic meters using the conversion \(1\, \text{gallon} = 3.785 \times 10^{-3} \, \text{m}^3\). |
| 10 | \[V_{container} = 0.01893 \, \text{m}^3\] | Calculate the volume of the container in cubic meters. |
| 11 | \[t = \frac{V_{container}}{Q} = \frac{0.01893}{0.00194}\] | Determine the time to fill the container by dividing the volume of water by the flow rate. |
| 12 | \[t \approx 9.76 \, \text{s}\] | Calculate the time required to fill the container with water. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.

A Venturi meter is a device used for measuring the speed of a fluid within a pipe. The drawing shows a gas flowing at a speed \( v_2 \) through a horizontal section of pipe with a cross-sectional area \( A_2 = 542 \) \( \text{cm}^2 \). The gas has a density of \( 1.35 \) \( \text{kg/m}^3 \). The Venturi meter has a cross-sectional area of \( A_1 = 215 \) \( \text{cm}^2 \) and has been substituted for a section of the larger pipe. The pressure difference between the two sections \( P_2 – P_1 = 145 \) \( \text{Pa} \).

The figure shows a container filled with water to a depth \( d \). The container has a hole a distance \( y \) above its bottom, allowing water to exit with an initially horizontal velocity. Which of the following correctly predicts and explains how the speed of the water as it exits the hole would change if the distance \( y \) above the bottom of the container increased?
A cylindrical tank of water (height \( H \)) is punctured at a height \( h \) above the bottom. How far from the base of the tank will the water stream land (in terms of \( h \) and \( H \))? What must the value of \( h \) be such that the distance at which the stream lands will be equal to \( H \)?
A liquid flows at a constant flow rate through a pipe with circular cross-sections of varying diameters. At one point in the pipe, the diameter is \(2\) \(\text{cm}\) and the flow speed is \(18\) \(\text{m/s}\). What is the flow speed at another point in this pipe, where the diameter is \(3\) \(\text{cm}\).
A small rock sits at the bottom of a cup filled with water. The upward force exerted by the water on the rock is \( F_0 \). The water is then poured out and replaced by an oil that is \( \frac{3}{4} \) as dense as water, and the rock again sits at the bottom of the cup, completely under the oil. Which of the following expressions correctly represents the magnitude of the upward force exerted by the oil on the rock?
The diagram above shows a hydraulic chamber with a spring \( (k_s = 1250 \, \text{N/m}) \) attached to the input piston and a rock of mass \( 55.2 \, \text{kg} \) resting on the output plunger. The input piston and output plunger are at about the same height, and each has negligible mass. The chamber is filled with water.

Water flows from point \( A \) to points \( D \) and \( E \) as shown. Some of the flow parameters are known, as shown in the table. Determine the unknown parameters. Note the diagram above does not show the relative diameters of each section of the pipe.
| Section | Diameter | Flow Rate | Velocity |
|---|---|---|---|
| \( \text{AB} \) | \( 300 \) \( \text{mm} \) | \(\textbf{?}\) | \(\textbf{?}\) |
| \( \text{BC} \) | \( 600 \) \( \text{mm} \) | \(\textbf{?}\) | \( 1.2 \) \( \text{m/s} \) |
| \( \text{CD} \) | \(\textbf{?}\) | \( Q_{CD} = 2Q_{CE} \) \( \text{m}^3/\text{s} \) | \( 1.4 \) \( \text{m/s} \) |
| \( \text{CE} \) | \( 150 \) \( \text{mm} \) | \( Q_{CE} = 0.5Q_{CD} \) \( \text{m}^3/\text{s} \) | \(\textbf{?}\) |
A pump is used to send water through a hose, the diameter of which is \( 10 \) times that of the nozzle through which the water exits. If the nozzle is \( 1 \) \(\text{m}\) higher than the pump, and the water flows through the hose at \( 0.4 \) \(\text{m/s}\), what is the difference in pressure between the pump and the atmosphere?
In the lab, a student is given a glass beaker filled with water with an ice cube of mass \( m \) and volume \( V_c \) floating in it.
The downward force of gravity on the ice cube has magnitude \( F_g \). The student pushes down on the ice cube with a force of magnitude \( F_P \) so that the cube is totally submerged. The water then exerts an upward buoyant force on the ice cube of magnitude \( F_B \). Which of the following is an expression for the magnitude of the acceleration of the ice cube when it is released?
How large must a heating duct be if air moving \( 3 \ \frac{\text{m}}{\text{s}} \) along it can replenish the air in a room of \( 300 \ \text{m}^3 \) volume every \( 15 \) minutes? Assume the air’s density remains constant.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?