New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

AP Physics

Unit 8 - Fluids

FRQ
Mathematical
Advanced

Pro Tier

Unlimited Grading Credits, Explanations, and AI Assist

0 attempts

0% avg

Explanation 0
0

Part (a): Gauge Pressure at Faucet A

Step Derivation/Formula Reasoning
1 \[h_A = 15.0 \, \text{m}\] The height of water above faucet A is given as 15.0 meters.
2 \[P_{gA} = \rho g h_A\] The gauge pressure at a depth is calculated using the formula, where \(\rho\) is the density of water \(\approx 1000 \, \text{kg/m}^3\), and \(g\) is the acceleration due to gravity \( \approx 9.81 \, \text{m/s}^2 \).
3 \[P_{gA} = (1000)(9.81)(15)\] Substitute the known values into the gauge pressure equation.
4 \[P_{gA} = 147150 \, \text{Pa}\] Calculate the gauge pressure at faucet A.

Part (b): Gauge Pressure at Faucet B

Step Derivation/Formula Reasoning
1 \[h_B = 15.0 – 7.30 \, \text{m}\] Calculate the height of water above faucet B, given as 7.30 meters below the reservoir base.
2 \[h_B = 7.70 \, \text{m}\] Find the effective height of water above faucet B.
3 \[P_{gB} = \rho g h_B\] The gauge pressure at faucet B is calculated using the effective height \(h_B\).
4 \[P_{gB} = (1000)(9.81)(7.70)\] Substitute the known values into the gauge pressure equation for B.
5 \[P_{gB} = 75537 \, \text{Pa}\] Calculate the gauge pressure at faucet B.

Part (c): Time to Fill Container at Faucet A

Step Derivation/Formula Reasoning
1 \[r = \frac{1.20}{2} \, \text{cm} = 0.006 \, \text{m}\] Convert the diameter of the faucet to meters and find the radius.
2 \[A = \pi r^2 = \pi (0.006)^2\] Calculate the cross-sectional area of the faucet.
3 \[A \approx 1.131 \times 10^{-4} \, \text{m}^2\] Evaluate the area of the faucet.
4 \[v = \sqrt{\frac{2P_{gA}}{\rho}}\] Calculate the velocity of water flowing out, using Bernoulli’s principle where \(P_{gA}\) is the gauge pressure at faucet A.
5 \[v = \sqrt{\frac{2(147150)}{1000}}\] Substitute the gauge pressure and density of water to find velocity.
6 \[v \approx 17.14 \, \text{m/s}\] Calculate the velocity of water at the faucet.
7 \[Q = A \times v = 1.131 \times 10^{-4} \times 17.14\] Find the flow rate \(Q\) using the area and the velocity.
8 \[Q \approx 0.00194 \, \text{m}^3/\text{s}\] Evaluate the flow rate of water through the faucet.
9 \[V_{container} = 5.00 \times 3.785 \times 10^{-3} \, \text{m}^3\] Convert 5 gallons to cubic meters using the conversion \(1\, \text{gallon} = 3.785 \times 10^{-3} \, \text{m}^3\).
10 \[V_{container} = 0.01893 \, \text{m}^3\] Calculate the volume of the container in cubic meters.
11 \[t = \frac{V_{container}}{Q} = \frac{0.01893}{0.00194}\] Determine the time to fill the container by dividing the volume of water by the flow rate.
12 \[t \approx 9.76 \, \text{s}\] Calculate the time required to fill the container with water.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

We'll help clarify entire units in one hour or less — guaranteed.

NEW AI Quiz Builder

Be the first to use our new Quiz platform to create and grade quizzes from scratch. Join the waitlist and we'll email you for early access.

Go Pro to remove ads + unlimited access to our AI learning tools.
  1. \(147150 \text{Pa}\)
  2. \(75537 \text{Pa}\)
  3. \(9.76 \text{s}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

Metric Prefixes

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!

Phy Pro

One price to unlock most advanced version of Phy across all our tools.

$11.99

per month

Billed Monthly. Cancel Anytime.

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.

Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.