0 attempts
0% avg
| Derivation or Formula | Reasoning |
|---|---|
| \[A_1 v_1 = A_2 v_2\] | Continuity for steady flow: the volume flow rate is constant, so \(A_1 v_1 = A_2 v_2\). |
| \[v_1 = \left(\frac{A_2}{A_1}\right)v_2\] | Solve the continuity equation for \(v_1\) in terms of \(v_2\). |
| \[P_2 + \frac{1}{2}\rho v_2^2 = P_1 + \frac{1}{2}\rho v_1^2\] | Bernoulli’s equation for a horizontal pipe: same height so the \( \rho g y \) terms cancel, leaving pressure and kinetic terms. |
| \[P_2 – P_1 = \frac{1}{2}\rho\left(v_1^2 – v_2^2\right)\] | Rearrange Bernoulli to isolate the given pressure difference \(P_2 – P_1\). |
| \[P_2 – P_1 = \frac{1}{2}\rho\left(\left(\frac{A_2}{A_1}\right)^2 v_2^2 – v_2^2\right)\] | Substitute \(v_1 = \left(\frac{A_2}{A_1}\right)v_2\) so everything is in terms of \(v_2\). |
| \[P_2 – P_1 = \frac{1}{2}\rho\left(\left(\frac{A_2}{A_1}\right)^2 – 1\right)v_2^2\] | Factor out \(v_2^2\) to simplify the algebra. |
| \[v_2^2 = \frac{2(P_2 – P_1)}{\rho\left(\left(\frac{A_2}{A_1}\right)^2 – 1\right)}\] | Solve for \(v_2^2\). |
| \[\frac{A_2}{A_1} = \frac{542}{215} = 2.5209302326\] | Compute the area ratio (units cancel because both areas are in \(\text{cm}^2\)). Keep extra digits to reduce rounding error. |
| \[\left(\frac{A_2}{A_1}\right)^2 – 1 = (2.5209302326)^2 – 1 = 5.3530902024\] | Compute \(\left(\frac{A_2}{A_1}\right)^2 – 1\) accurately for the denominator. |
| \[v_2^2 = \frac{2(145)}{(1.35)(5.3530902024)} = 40.1025650823\] | Substitute \(P_2-P_1 = 145\ \text{Pa}\) and \(\rho = 1.35\ \text{kg/m}^3\) and evaluate \(v_2^2\). |
| \[v_2 = \sqrt{40.1025650823} = 6.3326543877\ \text{m/s}\] | Take the square root to get \(v_2\). |
| \[\boxed{v_2 \approx 6.33\ \text{m/s}}\] | Final answer to three significant figures (matching given data precision). |
| Derivation or Formula | Reasoning |
|---|---|
| \[A_1 v_1 = A_2 v_2\] | Use continuity again: same flow rate through both cross-sections. |
| \[v_1 = \left(\frac{A_2}{A_1}\right)v_2\] | Solve for \(v_1\). |
| \[v_1 = (2.5209302326)(6.3326543877) = 15.9598116104\ \text{m/s}\] | Substitute the computed ratio and the result from part (a). |
| \[\boxed{v_1 \approx 16.0\ \text{m/s}}\] | Round to three significant figures. |
| Derivation or Formula | Reasoning |
|---|---|
| \[Q = A_2 v_2\] | Volume flow rate is \(Q\), equal to area times speed at that section. |
| \[A_2 = 542\ \text{cm}^2 = 542\times 10^{-4}\ \text{m}^2 = 0.0542\ \text{m}^2\] | Convert \(\text{cm}^2\) to \(\text{m}^2\): \(1\ \text{cm}^2 = 10^{-4}\ \text{m}^2\). |
| \[Q = (0.0542)(6.3326543877) = 0.3434308678\ \text{m}^3/\text{s}\] | Multiply \(A_2\) (in \(\text{m}^2\)) by \(v_2\) (in \(\text{m/s}\)) to get \(Q\) in \(\text{m}^3/\text{s}\). |
| \[\boxed{Q \approx 0.343\ \text{m}^3/\text{s}}\] | Round to three significant figures. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
In the lab, a student is given a glass beaker filled with water with an ice cube of mass \( m \) and volume \( V_c \) floating in it.
The downward force of gravity on the ice cube has magnitude \( F_g \). The student pushes down on the ice cube with a force of magnitude \( F_P \) so that the cube is totally submerged. The water then exerts an upward buoyant force on the ice cube of magnitude \( F_B \). Which of the following is an expression for the magnitude of the acceleration of the ice cube when it is released?
A liquid flows at a constant flow rate through a pipe with circular cross-sections of varying diameters. At one point in the pipe, the diameter is \(2\) \(\text{cm}\) and the flow speed is \(18\) \(\text{m/s}\). What is the flow speed at another point in this pipe, where the diameter is \(3\) \(\text{cm}\).
A cylindrical tank of water (height \( H \)) is punctured at a height \( h \) above the bottom. How far from the base of the tank will the water stream land (in terms of \( h \) and \( H \))? What must the value of \( h \) be such that the distance at which the stream lands will be equal to \( H \)?

The \( 70 \) \( \text{kg} \) student in the figure balances a \( 1200 \) \( \text{kg} \) elephant on a hydraulic lift. Assume that it is filled with oil, which is incompressible and has a density \( \rho = 900 \) \( \text{kg/m}^3 \). What is the diameter of the piston the student is standing on? Assume each piston has a cylindrical shape, i.e., a circular cross-sectional area. Note: The two pistons are at the same height. Also, the diameter of the wider piston is given in the figure to be \( 2.0 \) \( \text{m} \).
The side of an above-ground pool is punctured, and water gushes out through the hole. If the total depth of the pool is \( 2.5 \) \( \text{m} \), and the puncture is \( 1 \) \( \text{m} \) above the ground level, what is the efflux speed of the water?
Rex, an auto mechanic, is raising a \( 1200 \) \( \text{kg} \) car on his hydraulic lift so that he can work underneath. If the area of the input piston is \( 12.0 \) \( \text{cm}^2 \), while the output piston has an area of \( 700 \) \( \text{cm}^2 \), what force must be exerted on the input piston to lift the car?
The difference in pressure between the atmosphere and the human lungs is \( 1.05 \times 10^5 \) \( \text{Pa} \). What is the longest straw you could use to draw up milk whose density is \( 1030 \) \( \text{kg/m}^3 \)?

An object is suspended from a spring scale first in air, then in water, as shown in the figure above. The spring scale reading in air is \( 17.8 \) \( \text{N} \), and the spring scale reading when the object is completely submerged in water is \( 16.2 \) \( \text{N} \). The density of water is \( 1000 \) \( \text{kg/m}^3 \).

A helium-filled balloon is attached by a string of negligible mass to a small \(0.015 \ \text{kg}\) object that is just heavy enough to keep the balloon from rising. The total mass of the balloon, including the helium, is \(0.0050 \ \text{kg}\). The density of air is \(\rho_{\text{air}} = 1.29 \ \text{kg/m}^3\), and the density of helium is \(\rho_{\text{He}} = 0.179 \ \text{kg/m}^3\). The buoyant force on the \(0.015 \ \text{kg}\) object is small enough to be negligible.
A sample of an unknown material appears to weigh \( 285 \) \( \text{N} \) in air and \( 195 \) \( \text{N} \) when immersed in alcohol of specific gravity \( 0.700 \).
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?