AP Physics

Unit 8 - Fluids

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part (a) — Find speed \(v_2\)

Derivation or Formula Reasoning
\[A_1 v_1 = A_2 v_2\] Continuity for steady flow: the volume flow rate is constant, so \(A_1 v_1 = A_2 v_2\).
\[v_1 = \left(\frac{A_2}{A_1}\right)v_2\] Solve the continuity equation for \(v_1\) in terms of \(v_2\).
\[P_2 + \frac{1}{2}\rho v_2^2 = P_1 + \frac{1}{2}\rho v_1^2\] Bernoulli’s equation for a horizontal pipe: same height so the \( \rho g y \) terms cancel, leaving pressure and kinetic terms.
\[P_2 – P_1 = \frac{1}{2}\rho\left(v_1^2 – v_2^2\right)\] Rearrange Bernoulli to isolate the given pressure difference \(P_2 – P_1\).
\[P_2 – P_1 = \frac{1}{2}\rho\left(\left(\frac{A_2}{A_1}\right)^2 v_2^2 – v_2^2\right)\] Substitute \(v_1 = \left(\frac{A_2}{A_1}\right)v_2\) so everything is in terms of \(v_2\).
\[P_2 – P_1 = \frac{1}{2}\rho\left(\left(\frac{A_2}{A_1}\right)^2 – 1\right)v_2^2\] Factor out \(v_2^2\) to simplify the algebra.
\[v_2^2 = \frac{2(P_2 – P_1)}{\rho\left(\left(\frac{A_2}{A_1}\right)^2 – 1\right)}\] Solve for \(v_2^2\).
\[\frac{A_2}{A_1} = \frac{542}{215} = 2.5209302326\] Compute the area ratio (units cancel because both areas are in \(\text{cm}^2\)). Keep extra digits to reduce rounding error.
\[\left(\frac{A_2}{A_1}\right)^2 – 1 = (2.5209302326)^2 – 1 = 5.3530902024\] Compute \(\left(\frac{A_2}{A_1}\right)^2 – 1\) accurately for the denominator.
\[v_2^2 = \frac{2(145)}{(1.35)(5.3530902024)} = 40.1025650823\] Substitute \(P_2-P_1 = 145\ \text{Pa}\) and \(\rho = 1.35\ \text{kg/m}^3\) and evaluate \(v_2^2\).
\[v_2 = \sqrt{40.1025650823} = 6.3326543877\ \text{m/s}\] Take the square root to get \(v_2\).
\[\boxed{v_2 \approx 6.33\ \text{m/s}}\] Final answer to three significant figures (matching given data precision).

Part (b) — Find speed \(v_1\)

Derivation or Formula Reasoning
\[A_1 v_1 = A_2 v_2\] Use continuity again: same flow rate through both cross-sections.
\[v_1 = \left(\frac{A_2}{A_1}\right)v_2\] Solve for \(v_1\).
\[v_1 = (2.5209302326)(6.3326543877) = 15.9598116104\ \text{m/s}\] Substitute the computed ratio and the result from part (a).
\[\boxed{v_1 \approx 16.0\ \text{m/s}}\] Round to three significant figures.

Part (c) — Find volume flow rate \(Q\)

Derivation or Formula Reasoning
\[Q = A_2 v_2\] Volume flow rate is \(Q\), equal to area times speed at that section.
\[A_2 = 542\ \text{cm}^2 = 542\times 10^{-4}\ \text{m}^2 = 0.0542\ \text{m}^2\] Convert \(\text{cm}^2\) to \(\text{m}^2\): \(1\ \text{cm}^2 = 10^{-4}\ \text{m}^2\).
\[Q = (0.0542)(6.3326543877) = 0.3434308678\ \text{m}^3/\text{s}\] Multiply \(A_2\) (in \(\text{m}^2\)) by \(v_2\) (in \(\text{m/s}\)) to get \(Q\) in \(\text{m}^3/\text{s}\).
\[\boxed{Q \approx 0.343\ \text{m}^3/\text{s}}\] Round to three significant figures.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

  1. \(\boxed{v_2 \approx 6.33\ \text{m/s}}\)
  2. \(\boxed{v_1 \approx 16.0\ \text{m/s}}\)
  3. \(\boxed{Q \approx 0.343\ \text{m}^3/\text{s}}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Feeling uneasy about your next physics test? We help boost grades in 3 lesson or less.

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.