0 attempts
0% avg
UBQ Credits
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[K_i = \frac{1}{2} m v_i^2\] | The box begins with kinetic energy \(K_i\). |
| 2 | \[W_s = K_f – K_i\] | The spring’s work \(W_s\) equals the change in kinetic energy \(\Delta K\). |
| 3 | \[K_f = 0\] | At maximum compression the box momentarily stops, so \(K_f = 0\). |
| 4 | \[W_s = -K_i\] | Since \(K_i > 0\) and \(K_f = 0\), the spring does negative work (it removes energy from the box). |
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[K_i = \frac{1}{2}(20)(4.0)^2 = 160\,\text{J}\] | Compute the initial kinetic energy using \(m = 20\,\text{kg}\) and \(v_i = 4.0\,\text{m/s}\). |
| 2 | \[|W_s| = K_i = 160\,\text{J}\] | The magnitude of the spring’s work equals the lost kinetic energy. |
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[W_s = -\frac{1}{2}k x_{\max}^2\] | Work done by a spring compressing from \(0\) to \(x_{\max}\). |
| 2 | \[-160 = -\frac{1}{2}k(0.50)^2\] | Insert \(|W_s| = 160\,\text{J}\) and \(x_{\max} = 0.50\,\text{m}\). |
| 3 | \[k = 1.28 \times 10^3\,\text{N/m}\] | Solve for the spring constant. |
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[a_{\max} = \frac{k x_{\max}}{m}\] | For simple harmonic motion, acceleration magnitude is \(|a| = (k/m)|x|\); maximum occurs at amplitude. |
| 2 | \[a_{\max} = \frac{(1.28\times10^3)(0.50)}{20} = 32\,\text{m/s}^2\] | Substitute \(k\), \(x_{\max}\), and \(m\). |
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}\] | Frequency of a mass–spring system on a frictionless surface. |
| 2 | \[f = \frac{1}{2\pi}\sqrt{\frac{1.28\times10^3}{20}} \approx 1.27\,\text{Hz}\] | Insert \(k\) and \(m\) and simplify. |
| Step | Derivation or Formula | Reasoning |
|---|---|---|
| 1 | \[E = \frac{1}{2}kA^2 = 160\,\text{J}\] | Total mechanical energy \(E\) equals the initial kinetic energy; amplitude \(A = 0.50\,\text{m}\). |
| 2 | \[K(x) = E – \frac{1}{2}k x^2 = 160 – 640 x^2\] | Kinetic energy as a function of position for simple harmonic motion. |
| 3 | \[K(\pm0.50) = 0,\; K(0)=160\,\text{J}\] | Shows the endpoints and midpoint values used for sketching. |
| 4 | \[\text{Parabolic}\] | The graph is an inverted parabola opening downward, symmetric about \(x=0\), peaking at \(160\,\text{J}\) and touching the horizontal axis at \(x = \pm0.50\,\text{m}\). |
Just ask: "Help me solve this problem."
An object with a mass \(m = 80 \, \text{g}\) is attached to a spring with a force constant \(k = 25 \, \text{N/m}\). The spring is stretched \(52.0 \, \text{cm}\) and released from rest. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position.
A \( 25.0 \) \( \text{kg} \) block is placed at the top of an inclined plane set at an angle of \( 35 \) degrees to the horizontal. The block slides down the \( 1.5 \) \( \text{m} \) slope at a constant rate. How much work did friction do on the block?
A baseball is thrown vertically into the air with a velocity \( v \), and reaches a maximum height \( h \). At what height was the baseball moving with one-half its original velocity? Assume air resistance is negligible.
A pendulum bob of mass m on a cord of length L is pulled sideways until the cord makes an angle [katex] \theta [/katex] with the vertical. The change in potential energy of the bob during the displacement is:
A horizontal force of \(110 \, \text{N}\) is applied to a \(12 \, \text{kg}\) object, moving it \(6 \, \text{m}\) on a horizontal surface where the kinetic friction coefficient is \(\mu_k = 0.25\). The object then slides up a \(17^\circ\) inclined plane. Assuming the \(110 \, \text{N}\) force is no longer acting on the incline, and the coefficient of kinetic friction there is \(\mu_k = 0.45\), calculate the distance the object will slide on the incline.
\(\text{Negative}\)
\(160\,\text{J}\)
\(1.28\times10^{3}\,\text{N/m}\)
\(32\,\text{m/s^{2}}\)
\(1.27\,\text{Hz}\)
\(K(x)=160-640x^{2}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?