0 attempts
0% avg
UBQ Credits
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[K_i = \frac{1}{2} m v_i^2\] | The box begins with kinetic energy \(K_i\). |
2 | \[W_s = K_f – K_i\] | The spring’s work \(W_s\) equals the change in kinetic energy \(\Delta K\). |
3 | \[K_f = 0\] | At maximum compression the box momentarily stops, so \(K_f = 0\). |
4 | \[W_s = -K_i\] | Since \(K_i > 0\) and \(K_f = 0\), the spring does negative work (it removes energy from the box). |
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[K_i = \frac{1}{2}(20)(4.0)^2 = 160\,\text{J}\] | Compute the initial kinetic energy using \(m = 20\,\text{kg}\) and \(v_i = 4.0\,\text{m/s}\). |
2 | \[|W_s| = K_i = 160\,\text{J}\] | The magnitude of the spring’s work equals the lost kinetic energy. |
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[W_s = -\frac{1}{2}k x_{\max}^2\] | Work done by a spring compressing from \(0\) to \(x_{\max}\). |
2 | \[-160 = -\frac{1}{2}k(0.50)^2\] | Insert \(|W_s| = 160\,\text{J}\) and \(x_{\max} = 0.50\,\text{m}\). |
3 | \[k = 1.28 \times 10^3\,\text{N/m}\] | Solve for the spring constant. |
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[a_{\max} = \frac{k x_{\max}}{m}\] | For simple harmonic motion, acceleration magnitude is \(|a| = (k/m)|x|\); maximum occurs at amplitude. |
2 | \[a_{\max} = \frac{(1.28\times10^3)(0.50)}{20} = 32\,\text{m/s}^2\] | Substitute \(k\), \(x_{\max}\), and \(m\). |
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}\] | Frequency of a mass–spring system on a frictionless surface. |
2 | \[f = \frac{1}{2\pi}\sqrt{\frac{1.28\times10^3}{20}} \approx 1.27\,\text{Hz}\] | Insert \(k\) and \(m\) and simplify. |
Step | Derivation or Formula | Reasoning |
---|---|---|
1 | \[E = \frac{1}{2}kA^2 = 160\,\text{J}\] | Total mechanical energy \(E\) equals the initial kinetic energy; amplitude \(A = 0.50\,\text{m}\). |
2 | \[K(x) = E – \frac{1}{2}k x^2 = 160 – 640 x^2\] | Kinetic energy as a function of position for simple harmonic motion. |
3 | \[K(\pm0.50) = 0,\; K(0)=160\,\text{J}\] | Shows the endpoints and midpoint values used for sketching. |
4 | \[\text{Parabolic}\] | The graph is an inverted parabola opening downward, symmetric about \(x=0\), peaking at \(160\,\text{J}\) and touching the horizontal axis at \(x = \pm0.50\,\text{m}\). |
Just ask: "Help me solve this problem."
Two blocks of ice, one five times as heavy as the other, are at rest on a frozen lake. A person then pushes each block the same distance d. Ignore friction and assume that an equal force F is exerted on each block. Which of the following statements is true about the kinetic energy of the heavier block after the push?
A sphere of mass \( M \) and radius \( r \), and rotational inertia \( I \) is released from the top of an inclined plane of height \( h \). The surface has considerable friction. Using only the variables mentioned, derive an expression for the sphere’s center of mass velocity.
A boulder is raised above the ground so that its potential energy is 550 J. Then it is dropped. Assuming 92 J of energy was lost to air resistance, what is the kinetic energy of the boulder just before it hits the ground?
An object undergoing simple harmonic motion has a maximum displacement of \( 6.2 \) \( \text{m} \) at \( t = 0.0 \) \( \text{s} \). If the angular frequency of oscillation is \( 1.6 \) \( \text{rad/s} \), what is the object’s displacement when \( t = 3.5 \) \( \text{s} \)?
The graph represents the position \( x \) as a function of time \( t \) for an object undergoing simple harmonic motion. Which of the following equations could represent the position \( x \) as a function of time \( t \)?
\(\text{Negative}\)
\(160\,\text{J}\)
\(1.28\times10^{3}\,\text{N/m}\)
\(32\,\text{m/s^{2}}\)
\(1.27\,\text{Hz}\)
\(K(x)=160-640x^{2}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.