0 attempts
0% avg
UBQ Credits
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_{iy}=v_i\sin\theta\] | Resolve the initial speed into its vertical component \(v_{iy}\). |
| 2 | \[0 = v_{iy}^2 + 2(-g)\Delta y\] | At the peak the vertical velocity is zero; apply the kinematic equation with acceleration \(-g\). |
| 3 | \[\Delta y = \frac{v_{iy}^2}{2g}\] | Solve algebraically for the vertical displacement \(\Delta y\), the maximum height. |
| 4 | \[v_{iy}=36.6\sin42.2^\circ = 24.58\,\text{m/s}\] | Insert the given numbers to get \(v_{iy}\). |
| 5 | \[h_{\text{max}} = \frac{(24.6\,\text{m/s})^2}{2(9.80\,\text{m/s}^2)} = 30.83\,\text{m}\] | Calculate the numerical value of the height. |
| 6 | \[\boxed{30.8\,\text{m}}\] | Maximum height reached. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[t = \frac{2v_{iy}}{g}\] | Round-trip time is twice the time to reach the peak, using symmetry of the motion. |
| 2 | \[t = \frac{2(24.6\,\text{m/s})}{9.80\,\text{m/s}^2} = 5.02\,\text{s}\] | Substitute \(v_{iy}\) and \(g\). |
| 3 | \[\boxed{5.02\,\text{s}}\] | Total time in the air. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_x = v_i\cos\theta\] | Resolve the initial speed into its horizontal component \(v_x\). |
| 2 | \[v_x = 36.6\cos42.2^\circ = 27.1\,\text{m/s}\] | Insert the given numbers. |
| 3 | \[R = v_x t\] | The horizontal distance equals horizontal speed times total time (no horizontal acceleration). |
| 4 | \[R = 27.1\,\text{m/s}\times5.02\,\text{s} = 1.36\times10^{2}\,\text{m}\] | Compute the range. |
| 5 | \[\boxed{1.36\times10^{2}\,\text{m}}\] | Total horizontal distance. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_x = 27.1\,\text{m/s}\] | Horizontal speed remains constant throughout the flight. |
| 2 | \[v_y = v_{iy} – g t\] | Use the kinematic relation for vertical velocity after time \(t\). |
| 3 | \[v_y = 24.6\,\text{m/s} – (9.80\,\text{m/s}^2)(1.50\,\text{s}) = 9.9\,\text{m/s}\] | Insert the numbers to find \(v_y\) at \(1.50\ ~\text{s}\). |
| 4 | \[v = \sqrt{v_x^2 + v_y^2}\] | Speed is the magnitude of the velocity vector. |
| 5 | \[v = \sqrt{(27.1\,\text{m/s})^2 + (9.9\,\text{m/s})^2} = 28.9\,\text{m/s}\] | Compute the magnitude. |
| 6 | \[\boxed{28.9\,\text{m/s}}\] | Speed \(1.50\ ~\text{s}\) after launch. |
Just ask: "Help me solve this problem."
Which of the following statements about the acceleration due to gravity is TRUE?
Two cannonballs, A and B, are fired from the ground with identical initial speeds, but with \( \theta_A \) larger than \( \theta_B \).
3 clay balls, labeled A, B, and C are launched from the same height at the same speed as shown above. A is launched at \( 30^\circ \) above horizontal, B is launched horizontally, and C is launched \( 30^\circ \) below the horizontal. They all hit the wall (before reaching the ground) in times \( t_A \), \( t_B \), and \( t_C \) respectively. Rank these times from least to greatest.
A soccer ball is kicked horizontally off an \( 85 \) \( \text{m} \) high cliff at a speed of \( 34 \) \( \text{m/s} \). What is the ball’s final speed when it hits the ground below?
You must split an apple resting on top of you friend’s head from a distance of 27 m. When you aim directly at the apple, the arrow is horizontal. At what angle should you aim the arrow to hit the apple if the arrow travels at a speed of 35 m/s?
\(30.8\,\text{m}\)
\(5.02\,\text{s}\)
\(1.36\times10^{2}\,\text{m}\)
\(28.9\,\text{m/s}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?