0 attempts
0% avg
UBQ Credits
Step | Derivation / Formula | Reasoning |
---|---|---|
1 | \[v_{iy}=v_i\sin\theta\] | Resolve the initial speed into its vertical component \(v_{iy}\). |
2 | \[0 = v_{iy}^2 + 2(-g)\Delta y\] | At the peak the vertical velocity is zero; apply the kinematic equation with acceleration \(-g\). |
3 | \[\Delta y = \frac{v_{iy}^2}{2g}\] | Solve algebraically for the vertical displacement \(\Delta y\), the maximum height. |
4 | \[v_{iy}=36.6\sin42.2^\circ = 24.6\,\text{m/s}\] | Insert the given numbers to get \(v_{iy}\). |
5 | \[h_{\text{max}} = \frac{(24.6\,\text{m/s})^2}{2(9.80\,\text{m/s}^2)} = 30.9\,\text{m}\] | Calculate the numerical value of the height. |
6 | \[\boxed{30.9\,\text{m}}\] | Maximum height reached. |
Step | Derivation / Formula | Reasoning |
---|---|---|
1 | \[t = \frac{2v_{iy}}{g}\] | Round-trip time is twice the time to reach the peak, using symmetry of the motion. |
2 | \[t = \frac{2(24.6\,\text{m/s})}{9.80\,\text{m/s}^2} = 5.02\,\text{s}\] | Substitute \(v_{iy}\) and \(g\). |
3 | \[\boxed{5.02\,\text{s}}\] | Total time in the air. |
Step | Derivation / Formula | Reasoning |
---|---|---|
1 | \[v_x = v_i\cos\theta\] | Resolve the initial speed into its horizontal component \(v_x\). |
2 | \[v_x = 36.6\cos42.2^\circ = 27.1\,\text{m/s}\] | Insert the given numbers. |
3 | \[R = v_x t\] | The horizontal distance equals horizontal speed times total time (no horizontal acceleration). |
4 | \[R = 27.1\,\text{m/s}\times5.02\,\text{s} = 1.36\times10^{2}\,\text{m}\] | Compute the range. |
5 | \[\boxed{1.36\times10^{2}\,\text{m}}\] | Total horizontal distance. |
Step | Derivation / Formula | Reasoning |
---|---|---|
1 | \[v_x = 27.1\,\text{m/s}\] | Horizontal speed remains constant throughout the flight. |
2 | \[v_y = v_{iy} – g t\] | Use the kinematic relation for vertical velocity after time \(t\). |
3 | \[v_y = 24.6\,\text{m/s} – (9.80\,\text{m/s}^2)(1.50\,\text{s}) = 9.9\,\text{m/s}\] | Insert the numbers to find \(v_y\) at 1.50 s. |
4 | \[v = \sqrt{v_x^2 + v_y^2}\] | Speed is the magnitude of the velocity vector. |
5 | \[v = \sqrt{(27.1\,\text{m/s})^2 + (9.9\,\text{m/s})^2} = 28.8\,\text{m/s}\] | Compute the magnitude. |
6 | \[\boxed{28.8\,\text{m/s}}\] | Speed 1.50 s after launch. |
Just ask: "Help me solve this problem."
A rocket-powered hockey puck has a thrust of 4.40 N and a total mass of 1.00 kg . It is released from rest on a frictionless table, 2.10 m from the edge of a 2.10 m drop. The front of the rocket is pointed directly toward the edge. Assuming that the thrust of the rocket present for the entire time of travel, how far does the puck land from the base of the table?
An eagle is flying horizontally at \(6 \, \text{m/s}\) with a fish in its claws. It accidentally drops the fish.
A rock is thrown from the top of a \( 15 \) \( \text{m} \) building at an unknown angle and speed. It hits a target on the ground \( 35 \) \( \text{m} \) away horizontally \( 3 \) \( \text{s} \) after launch. What was the rock’s launch angle?
During projectile motion (neglecting air resistance), what is the vertical acceleration at the highest point?
Water balloons are tossed from the roof of a building, all with the same speed but with different launch angles. Which one has the highest speed when it hits the ground? Ignore air resistance. Without using equations, explain your answer.
\(30.9\,\text{m}\)
\(5.02\,\text{s}\)
\(1.36\times10^{2}\,\text{m}\)
\(28.8\,\text{m/s}\)
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.