0 attempts
0% avg
UBQ Credits
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_{iy}=v_i\sin\theta\] | Resolve the initial speed into its vertical component \(v_{iy}\). |
| 2 | \[0 = v_{iy}^2 + 2(-g)\Delta y\] | At the peak the vertical velocity is zero; apply the kinematic equation with acceleration \(-g\). |
| 3 | \[\Delta y = \frac{v_{iy}^2}{2g}\] | Solve algebraically for the vertical displacement \(\Delta y\), the maximum height. |
| 4 | \[v_{iy}=36.6\sin42.2^\circ = 24.58\,\text{m/s}\] | Insert the given numbers to get \(v_{iy}\). |
| 5 | \[h_{\text{max}} = \frac{(24.6\,\text{m/s})^2}{2(9.80\,\text{m/s}^2)} = 30.83\,\text{m}\] | Calculate the numerical value of the height. |
| 6 | \[\boxed{30.8\,\text{m}}\] | Maximum height reached. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[t = \frac{2v_{iy}}{g}\] | Round-trip time is twice the time to reach the peak, using symmetry of the motion. |
| 2 | \[t = \frac{2(24.6\,\text{m/s})}{9.80\,\text{m/s}^2} = 5.02\,\text{s}\] | Substitute \(v_{iy}\) and \(g\). |
| 3 | \[\boxed{5.02\,\text{s}}\] | Total time in the air. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_x = v_i\cos\theta\] | Resolve the initial speed into its horizontal component \(v_x\). |
| 2 | \[v_x = 36.6\cos42.2^\circ = 27.1\,\text{m/s}\] | Insert the given numbers. |
| 3 | \[R = v_x t\] | The horizontal distance equals horizontal speed times total time (no horizontal acceleration). |
| 4 | \[R = 27.1\,\text{m/s}\times5.02\,\text{s} = 1.36\times10^{2}\,\text{m}\] | Compute the range. |
| 5 | \[\boxed{1.36\times10^{2}\,\text{m}}\] | Total horizontal distance. |
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[v_x = 27.1\,\text{m/s}\] | Horizontal speed remains constant throughout the flight. |
| 2 | \[v_y = v_{iy} – g t\] | Use the kinematic relation for vertical velocity after time \(t\). |
| 3 | \[v_y = 24.6\,\text{m/s} – (9.80\,\text{m/s}^2)(1.50\,\text{s}) = 9.9\,\text{m/s}\] | Insert the numbers to find \(v_y\) at \(1.50\ ~\text{s}\). |
| 4 | \[v = \sqrt{v_x^2 + v_y^2}\] | Speed is the magnitude of the velocity vector. |
| 5 | \[v = \sqrt{(27.1\,\text{m/s})^2 + (9.9\,\text{m/s})^2} = 28.9\,\text{m/s}\] | Compute the magnitude. |
| 6 | \[\boxed{28.9\,\text{m/s}}\] | Speed \(1.50\ ~\text{s}\) after launch. |
Just ask: "Help me solve this problem."
A rifle is used to shoot a target twice, using identical cartridges. The first time, the rifle is aimed parallel to the ground and directly at the center of the bull’s-eye. The bullet strikes the target at a distance of \( H_A \) below the center, however. The second time, the rifle is similarly aimed, but from twice the distance from the target. This time the bullet strikes the target at a distance of \( H_B \) below the center. Find the ratio \( H_B / H_A \).
Two balls are thrown off a building with the same speed, one straight up and one at a 45° angle. Which statement is true if air resistance can be ignored?
A soccer ball with an initial height of \(1.5 \, \text{m}\) above the ground is launched at an angle of \(30^\circ\) above the horizontal. The soccer ball travels a horizontal distance of \(45 \, \text{m}\) to a \(9.0 \, \text{m}\) high castle wall, and passes over \(3.20 \, \text{m}\) above the highest point of the wall. Assume air resistance is negligible.
A rocket-powered hockey puck has a thrust of \(4.40 \, \text{N}\) and a total mass of \(1.00 \, \text{kg}\). It is released from rest on a frictionless table, \(2.10 \, \text{m}\) from the edge of a \(2.10 \, \text{m}\) drop. The front of the rocket is pointed directly toward the edge. Assuming that the thrust of the rocket is present for the entire time of travel, how far does the puck land from the base of the table?
Two balls are launched at the same time from opposite sides of a \( 100 \) \( \text{m} \) wide and \(1000 ~\text{m}\) canyon. Ball A is launched at \( 20 \) \( \text{m/s} \) at \( 45^{\circ} \) from the left side. Ball B is launched at \( 20 \) \( \text{m/s} \) at \( 45^{\circ} \) from the right side.
\(30.8\,\text{m}\)
\(5.02\,\text{s}\)
\(1.36\times10^{2}\,\text{m}\)
\(28.9\,\text{m/s}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?