0 attempts
0% avg
UBQ Credits
Derivation/Formula | Reasoning |
---|---|
\[\Delta x_A = v_i t + \tfrac{1}{2}(-g)t^2\] | Ball A is dropped, so \(v_i = 0\) and acceleration is \(-g\). |
\[\Delta x_A = -\tfrac{1}{2} g t^2\] | Simplify because \(v_i = 0\). |
\[x_A = H + \Delta x_A\] | Vertical position of Ball A relative to ground after time \(t\). |
\[x_A = H – \tfrac{1}{2} g t^2\] | Substitute \(\Delta x_A\). |
\[x_B = v_i t + \tfrac{1}{2}(-g)t^2\] | General kinematics for Ball B, launched upward with \(v_i = 30\,\text{m/s}\). |
\[x_B = 30t – \tfrac{1}{2} g t^2\] | Insert \(v_i = 30\,\text{m/s}\). |
\[H – \tfrac{1}{2} g t^2 = 30t – \tfrac{1}{2} g t^2\] | Set \(x_A = x_B\) because the balls pass each other. |
\[H = 30t\] | Identical \(-\tfrac{1}{2} g t^2\) terms cancel. |
\[H = 30(2.0)\] | Insert \(t = 2.0\,\text{s}\). |
\[\boxed{H = 60\,\text{m}}\] | Height of the cliff. |
Derivation/Formula | Reasoning |
---|---|
\[v_{xA} = v_i + (-g)t\] | Final velocity of Ball A after time \(t\); initial speed is zero. |
\[v_{xA} = -g(2.0)\] | Substitute \(t = 2.0\,\text{s}\). |
\[v_{xA} = -19.6\,\text{m/s}\] | Downward velocity of Ball A. |
\[v_{xB} = v_i + (-g)t\] | Final velocity of Ball B using the same kinematic relation. |
\[v_{xB} = 30 – g(2.0)\] | Insert \(v_i = 30\,\text{m/s}\) and \(t = 2.0\,\text{s}\). |
\[v_{xB} = 10.4\,\text{m/s}\] | Upward velocity of Ball B. |
\[\boxed{v_{xA} = -19.6\,\text{m/s}},\quad \boxed{v_{xB} = 10.4\,\text{m/s}}\] | Velocities when the balls pass. |
Just ask: "Help me solve this problem."
A rock is thrown vertically upward with a velocity of \( 20 \, \text{m/s} \) from the edge of a bridge \( 42 \, \text{m} \) above a river.
At time \( t = 0 \), a cart is at \( x = 10 \, \text{m} \) and has a velocity of \( 3 \, \text{m/s} \) in the \( -x \) direction. The cart has a constant acceleration in the \( +x \) direction with magnitude \( 3 \, \text{m/s}^2 < a < 6 \, \text{m/s}^2 \). Which of the following gives the possible range of the position of the cart at \( t = 1 \, \text{s} \)?
A person whose weight is 4.92 × 102 N is being pulled up vertically by a rope from the bottom of a cave that is 35.2 m deep. The maximum tension that the rope can withstand without breaking is 592 N. What is the shortest time, starting from rest, in which the person can be brought out of the cave?
A ball rolls down a ramp and gains speed. Its velocity is increasing in the negative direction. What can be said about its acceleration?
A rocket is sent to shoot down an invading spacecraft that is hovering at an altitude of \( 1500 \, \text{m} \). The rocket is launched with an initial velocity of \( 180 \, \text{m/s} \). Find the following:
\(60\,\text{m}\)
\(v_{xA} = -19.6\,\text{m/s},\; v_{xB} = 10.4\,\text{m/s}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.