0 attempts
0% avg
UBQ Credits
| Derivation / Formula | Reasoning |
|---|---|
| \[x(t) = v_i \cos\theta\, t\] | Horizontal motion is uniform (no horizontal acceleration), so position grows linearly with constant speed \(v_i\cos\theta\). |
| \[y(t) = v_i \sin\theta \, t – \tfrac{1}{2} g t^2\] | Vertical motion has initial upward speed \(v_i\sin\theta\) and constant downward acceleration \(g\), giving a parabola. |
| \[R=\frac{v_i^2\sin 2\theta}{g}\] | Level-ground range formula (derive by eliminating \(t_f\) from \(x=v_i\cos\theta\,t_f\) and \(0=v_i\sin\theta\,t_f-\tfrac{1}{2}gt_f^2\)). |
| \[\sin 2\theta=\frac{Rg}{v_i^2}=\frac{35\cdot 9.8}{20^2}=0.8575\] | Numerically \(2\theta\approx 59.0^\circ\) or \(121.0^\circ\), so \(\theta\approx 29.5^\circ\) (low) or \(\theta\approx 60.5^\circ\) (high). |
| \[h_{\max}=\frac{(v_i\sin\theta)^2}{2g}\] | Peak height test selects the physically relevant branch for \(y=5\,\text{m}\). |
| \[\begin{aligned} \theta&\approx 29.5^\circ:& h_{\max}&=\frac{(20\sin29.5^\circ)^2}{2\cdot 9.8}\approx 4.95\,\text{m}<5\\ \theta&\approx 60.5^\circ:& h_{\max}&=\frac{(20\sin60.5^\circ)^2}{2\cdot 9.8}\approx 15.46\,\text{m}>5 \end{aligned}\] | The low arc never reaches \(5\,\text{m}\); only the high arc can cross \(y=5\,\text{m}\) twice (upward and downward). |
| \[t=\frac{x}{v_i\cos\theta}\] | From \(x(t)=v_i\cos\theta\,t\), solve for time at a given horizontal position. |
| \[y(x)=v_i\sin\theta\Big(\frac{x}{v_i\cos\theta}\Big)-\frac{1}{2}g\Big(\frac{x}{v_i\cos\theta}\Big)^2\] | Substitute \(t\) into \(y(t)\) to express height directly in terms of \(x\). |
| \[y(x)=x\tan\theta-\frac{g\,x^2}{2v_i^{2}\cos^{2}\theta}\] | Algebraic simplification: \(\tan\theta=\frac{\sin\theta}{\cos\theta}\). |
| \[5=x\tan\theta-\frac{g\,x^2}{2v_i^{2}\cos^{2}\theta}\] | Impose the target height \(y=5\,\text{m}\) on the high-angle trajectory. |
| \[-\underbrace{\frac{g}{2v_i^{2}\cos^{2}\theta}}_{\displaystyle A}\,x^2+\underbrace{\tan\theta}_{\displaystyle B}\,x-\underbrace{5}_{\displaystyle C}=0\] | Identify quadratic coefficients \(a=-A,\; b=B,\; c=-5\). This makes the upcoming plug-in transparent. |
| \[\cos\theta\approx 0.4924,\quad \tan\theta\approx 1.7675,\quad A=\frac{9.8}{2\cdot 20^2\cos^2\theta}\approx 0.05052\] | Using \(\theta\approx 60.5^\circ\). Thus the quadratic is \(-0.05052\,x^2+1.7675\,x-5=0\). |
| \[\Delta=b^2-4ac=1.7675^2-4(-0.05052)(-5)\approx 2.114>0\] | Positive discriminant ⇒ two distinct horizontal positions reach \(y=5\,\text{m}\). |
| \[x=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-1.7675\pm \sqrt{2.114}}{2(-0.05052)}\] | Quadratic formula with \(a=-0.05052,\; b=1.7675,\; c=-5\). |
| \[x\approx 3.10\,\text{m}\quad\text{or}\quad x\approx 31.88\,\text{m}\] | Two crossings of the \(5\,\text{m}\) level: once ascending, once descending. |
| \[\boxed{x=3.1\,\text{m},\;31.9\,\text{m}}\] | Final answer, rounded. |
Just ask: "Help me solve this problem."
An eagle is flying horizontally at \(6 \, \text{m/s}\) with a fish in its claws. It accidentally drops the fish.
3 clay balls, labeled A, B, and C are launched from the same height at the same speed as shown above. A is launched at \( 30^\circ \) above horizontal, B is launched horizontally, and C is launched \( 30^\circ \) below the horizontal. They all hit the wall (before reaching the ground) in times \( t_A \), \( t_B \), and \( t_C \) respectively. Rank these times from least to greatest.
A ball is launched and lands \( 20 \) \( \text{m} \) away below the launch point \( 2.5 \) \( \text{s} \) later. The maximum height reached is \( 8.0 \) \( \text{m} \). What was the original launch velocity?
A ball of mass \( M \) is attached to a string of length \( L \). It moves in a vertical circle and at the bottom the ball just clears the ground. The tension at the bottom of the path is \( 3 \) times the weight of the ball. Give all answers in terms of \( M \), \( L \), and \( g \).
A person shoots a basketball with a speed of \( 12 \, \text{m/s} \) at an angle of \( 35^\circ \) above the horizontal. If the person is \( 2.4 \, \text{m} \) tall and the hoop is \( 3.05 \, \text{m} \) above the ground, how far back must the person stand in order to make the shot?
\(3.1 \text{ m}\)
\(31.9 \text{ m}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?