0 attempts
0% avg
UBQ Credits
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]x = v_{0x} t[/katex] | Horizontal distance ([katex]x[/katex]) is the product of horizontal velocity ([katex]v_{0x}[/katex]) and time ([katex]t[/katex]). |
2 | [katex]v_{0x} = v_0 \cos(\theta)[/katex] | Horizontal component of initial velocity ([katex]v_0[/katex]) at angle [katex]\theta[/katex]. |
3 | [katex]y = v_{0y} t – \frac{1}{2}gt^2[/katex] | Vertical motion equation, where [katex]y[/katex] is vertical displacement, [katex]v_{0y}[/katex] is initial vertical velocity. |
4 | [katex]v_{0y} = v_0 \sin(\theta)[/katex] | Vertical component of initial velocity. |
5 | [katex]y = 0[/katex] | The arrow must hit the apple at the same vertical level as the point of release. |
6 | [katex]0 = v_0 \sin(\theta) t – \frac{1}{2}gt^2[/katex] | Substituting [katex]y = 0[/katex] and [katex]v_{0y}[/katex]. |
7 | [katex]t = \frac{2v_0 \sin(\theta)}{g}[/katex] | Solving for time [katex]t[/katex]. |
8 | [katex]x = v_0 \cos(\theta) \times \frac{2v_0 \sin(\theta)}{g}[/katex] | Substituting [katex]t[/katex] in the horizontal motion equation. |
9 | [katex]\tan(\theta) = \frac{gx}{v_0^2}[/katex] | Solving for [katex]\tan(\theta)[/katex]. |
10 | [katex]\theta = \arctan\left(\frac{gx}{v_0^2}\right)[/katex] | Calculating the angle [katex]\theta[/katex]. |
Let’s calculate the angle [katex]\theta[/katex].
The angle at which the arrow should be aimed to hit the apple from a distance of 27 meters, given that the arrow travels at a speed of 35 m/s, is approximately [katex]\boxed{12.20^\circ}[/katex].
Just ask: "Help me solve this problem."
3 clay balls, labeled A, B, and C are launched from the same height at the same speed as shown above. A is launched at \( 30^\circ \) above horizontal, B is launched horizontally, and C is launched \( 30^\circ \) below the horizontal. They all hit the wall (before reaching the ground) in times \( t_A \), \( t_B \), and \( t_C \) respectively. Rank these times from least to greatest.
An airplane with a speed of \( 97.5 \, \text{m/s} \) is climbing upward at an angle of \( 50.0^\circ \) with respect to the horizontal. When the plane’s altitude is \( 732 \, \text{m} \), the pilot releases a package.
In a lab experiment, a ball is rolled down a ramp so that it leaves the edge of the table with a horizontal velocity [katex]v[/katex]. Assume there are no frictional forces. If the table has a height [katex]h[/katex] above the ground, how far away from the edge of the table, a distance [katex]x[/katex], does the ball land?
A bald eagle in level flight at a height of \(135 \, \text{m}\) drops the fish it caught. If the eagle’s speed is \(25.0 \, \text{m/s}\) how far from the drop point will the fish land?
A rifle is used to shoot a target twice, using identical cartridges. The first time, the rifle is aimed parallel to the ground and directly at the center of the bull’s-eye. The bullet strikes the target at a distance of \( H_A \) below the center, however. The second time, the rifle is similarly aimed, but from twice the distance from the target. This time the bullet strikes the target at a distance of \( H_B \) below the center. Find the ratio \( H_B / H_A \).
12.2°
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.