0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Explanation |
|---|---|---|
| 1 | \( y = y_0 + v_i t + \frac{1}{2} a t^2 \) | Use the kinematic equation for displacement. |
| 2 | Set \( y = 0 \), \( y_0 = 19.6 \) m, \( a = -9.8 \) m/s². | Define the variables. |
| 3 | For Ball A (downward): \( v_i = -14.7 \) m/s | Initial velocity downward is negative. |
| 4 | \( 0 = 19.6 -14.7 t – 4.9 t^2 \) | Substitute values into the equation. |
| 5 | \( 4.9 t^2 +14.7 t -19.6 = 0 \) | Rearrange into standard quadratic form. |
| 6 | Solve for \( t \): \( t = 1 \) s | Find the positive root of the quadratic equation. |
| 7 | For Ball B (upward): \( v_i = +14.7 \) m/s | Initial velocity upward is positive. |
| 8 | \( 0 = 19.6 +14.7 t – 4.9 t^2 \) | Substitute values into the equation. |
| 9 | \( -4.9 t^2 +14.7 t +19.6 = 0 \) | Simplify equation. |
| 10 | \( 4.9 t^2 -14.7 t -19.6 = 0 \) | Multiply both sides by -1. |
| 11 | Solve for \( t \): \( t = 4 \) s | Find the positive root of the quadratic equation. |
| 12 | \( \Delta t = t_{\text{Ball B}} – t_{\text{Ball A}} = 4 \, \text{s} – 1 \, \text{s} = 3 \, \text{s} \) | Calculate the difference in time. |
Answer: The difference in time the balls spend in the air is 3 seconds.
| Step | Derivation/Formula | Explanation |
|---|---|---|
| 1 | \( v = v_i + a t \) | Use the kinematic equation for velocity. |
| 2 | For Ball A: \( v = -14.7 \, \text{m/s} + (-9.8 \, \text{m/s}^2)(1 \, \text{s}) = -24.5 \, \text{m/s} \) | Compute final velocity for Ball A. |
| 3 | For Ball B: \( v = +14.7 \, \text{m/s} + (-9.8 \, \text{m/s}^2)(4 \, \text{s}) = -24.5 \, \text{m/s} \) | Compute final velocity for Ball B. |
Answer: Each ball strikes the ground with a velocity of -24.5 m/s downward.
| Step | Derivation/Formula | Explanation |
|---|---|---|
| 1 | \( y = y_0 + v_i t + \frac{1}{2} a t^2 \) | Use the kinematic equation for position. |
| 2 | For Ball A: \( y_{\text{A}} = 19.6 + (-14.7)(0.8) + \frac{1}{2}(-9.8)(0.8)^2 \) | Compute position of Ball A at \( t = 0.8 \) s. |
| 3 | \( y_{\text{A}} = 19.6 -11.76 -3.136 = 4.704 \, \text{m} \) | Simplify to find \( y_{\text{A}} \). |
| 4 | For Ball B: \( y_{\text{B}} = 19.6 + (+14.7)(0.8) + \frac{1}{2}(-9.8)(0.8)^2 \) | Compute position of Ball B at \( t = 0.8 \) s. |
| 5 | \( y_{\text{B}} = 19.6 +11.76 -3.136 = 28.224 \, \text{m} \) | Simplify to find \( y_{\text{B}} \). |
| 6 | \( \Delta y = y_{\text{B}} – y_{\text{A}} = 28.224 – 4.704 = 23.52 \, \text{m} \) | Calculate the distance between the balls. |
Answer: The balls are 23.52 meters apart 0.800 seconds after they are thrown.
Just ask: "Help me solve this problem."
Two balls are dropped off a cliff, 3 seconds apart. The first ball dropped is twice as heavy as the second ball dropped. Air resistance is negligible. While both balls are falling, the distance between the two balls is
Wile E. Coyote is (still) chasing after his arch-nemesis, the Roadrunner across a cliff that is \(125 \, \text{m}\) high. The Coyote is running in the horizontal direction towards the edge of a cliff when, at the last second, the Roadrunner steps out of the way and the witless coyote falls to the canyon floor.
An object is dropped from the top of a 45 m tall building
A rollercoaster leaves the station at rest. Its speed increases steadily for \( 6 \) \( \text{s} \) as it heads down the first drop. The ride then levels out and it moves at a constant speed for \( 4 \) \( \text{s} \) before hitting the brakes and stopping in \( 3 \) \( \text{s} \). Draw the velocity vs. time graph or explain it in terms of functions.
A body moving in the positive \( x \) direction passes the origin at time \( t = 0 \). Between \( t = 0 \) and \( t = 1 \, \text{second} \), the body has a constant speed of \( 24 \, \text{m/s} \). At \( t = 1 \, \text{second} \), the body is given a constant acceleration of \( 6 \, \text{m/s}^2 \) in the negative \( x \) direction. The position \( x \) of the body at \( t = 11 \, \text{seconds} \) is
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?