0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Explanation |
---|---|---|
1 | \( y = y_0 + v_i t + \frac{1}{2} a t^2 \) | Use the kinematic equation for displacement. |
2 | Set \( y = 0 \), \( y_0 = 19.6 \) m, \( a = -9.8 \) m/s². | Define the variables. |
3 | For Ball A (downward): \( v_i = -14.7 \) m/s | Initial velocity downward is negative. |
4 | \( 0 = 19.6 -14.7 t – 4.9 t^2 \) | Substitute values into the equation. |
5 | \( 4.9 t^2 +14.7 t -19.6 = 0 \) | Rearrange into standard quadratic form. |
6 | Solve for \( t \): \( t = 1 \) s | Find the positive root of the quadratic equation. |
7 | For Ball B (upward): \( v_i = +14.7 \) m/s | Initial velocity upward is positive. |
8 | \( 0 = 19.6 +14.7 t – 4.9 t^2 \) | Substitute values into the equation. |
9 | \( -4.9 t^2 +14.7 t +19.6 = 0 \) | Simplify equation. |
10 | \( 4.9 t^2 -14.7 t -19.6 = 0 \) | Multiply both sides by -1. |
11 | Solve for \( t \): \( t = 4 \) s | Find the positive root of the quadratic equation. |
12 | \( \Delta t = t_{\text{Ball B}} – t_{\text{Ball A}} = 4 \, \text{s} – 1 \, \text{s} = 3 \, \text{s} \) | Calculate the difference in time. |
Answer: The difference in time the balls spend in the air is 3 seconds.
Step | Derivation/Formula | Explanation |
---|---|---|
1 | \( v = v_i + a t \) | Use the kinematic equation for velocity. |
2 | For Ball A: \( v = -14.7 \, \text{m/s} + (-9.8 \, \text{m/s}^2)(1 \, \text{s}) = -24.5 \, \text{m/s} \) | Compute final velocity for Ball A. |
3 | For Ball B: \( v = +14.7 \, \text{m/s} + (-9.8 \, \text{m/s}^2)(4 \, \text{s}) = -24.5 \, \text{m/s} \) | Compute final velocity for Ball B. |
Answer: Each ball strikes the ground with a velocity of -24.5 m/s downward.
Step | Derivation/Formula | Explanation |
---|---|---|
1 | \( y = y_0 + v_i t + \frac{1}{2} a t^2 \) | Use the kinematic equation for position. |
2 | For Ball A: \( y_{\text{A}} = 19.6 + (-14.7)(0.8) + \frac{1}{2}(-9.8)(0.8)^2 \) | Compute position of Ball A at \( t = 0.8 \) s. |
3 | \( y_{\text{A}} = 19.6 -11.76 -3.136 = 4.704 \, \text{m} \) | Simplify to find \( y_{\text{A}} \). |
4 | For Ball B: \( y_{\text{B}} = 19.6 + (+14.7)(0.8) + \frac{1}{2}(-9.8)(0.8)^2 \) | Compute position of Ball B at \( t = 0.8 \) s. |
5 | \( y_{\text{B}} = 19.6 +11.76 -3.136 = 28.224 \, \text{m} \) | Simplify to find \( y_{\text{B}} \). |
6 | \( \Delta y = y_{\text{B}} – y_{\text{A}} = 28.224 – 4.704 = 23.52 \, \text{m} \) | Calculate the distance between the balls. |
Answer: The balls are 23.52 meters apart 0.800 seconds after they are thrown.
Just ask: "Help me solve this problem."
The alarm at a fire station rings and a 79.34-kg fireman, starting from rest, slides down a pole to the floor below (a distance of 4.20 m). Just before landing, his speed is 1.36 m/s. What is the magnitude of the kinetic frictional force exerted on the fireman as he slides down the pole?
A mine shaft is known to be 57.8 m deep. If you dropped a rock down the shaft, how long would it take for you to hear the sound of the rock hitting the bottom of the shaft knowing that sound travels at a constant velocity of 345 m/s?
Will Clark throws a baseball with a horizontal component of velocity of \(25 \, \text{m/s}\). It takes \(3 \, \text{s}\) to come back to its original height. Calculate the baseball’s:
Why is the stopping distance of a truck much shorter than for a train going the same speed? Hint: try deriving a formula or stopping distance.
Toy car W travels across a horizontal surface with an acceleration of \( a_w \) after starting from rest. Toy car Z travels across the same surface toward car W with an acceleration of \( a_z \), after starting from rest. Car W is separated from car Z by a distance \( d \). Which of the following pairs of equations could be used to determine the location on the horizontal surface where the two cars will meet, and why?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.