0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Explanation |
---|---|---|
1 | \( y = y_0 + v_i t + \frac{1}{2} a t^2 \) | Use the kinematic equation for displacement. |
2 | Set \( y = 0 \), \( y_0 = 19.6 \) m, \( a = -9.8 \) m/s². | Define the variables. |
3 | For Ball A (downward): \( v_i = -14.7 \) m/s | Initial velocity downward is negative. |
4 | \( 0 = 19.6 -14.7 t – 4.9 t^2 \) | Substitute values into the equation. |
5 | \( 4.9 t^2 +14.7 t -19.6 = 0 \) | Rearrange into standard quadratic form. |
6 | Solve for \( t \): \( t = 1 \) s | Find the positive root of the quadratic equation. |
7 | For Ball B (upward): \( v_i = +14.7 \) m/s | Initial velocity upward is positive. |
8 | \( 0 = 19.6 +14.7 t – 4.9 t^2 \) | Substitute values into the equation. |
9 | \( -4.9 t^2 +14.7 t +19.6 = 0 \) | Simplify equation. |
10 | \( 4.9 t^2 -14.7 t -19.6 = 0 \) | Multiply both sides by -1. |
11 | Solve for \( t \): \( t = 4 \) s | Find the positive root of the quadratic equation. |
12 | \( \Delta t = t_{\text{Ball B}} – t_{\text{Ball A}} = 4 \, \text{s} – 1 \, \text{s} = 3 \, \text{s} \) | Calculate the difference in time. |
Answer: The difference in time the balls spend in the air is 3 seconds.
Step | Derivation/Formula | Explanation |
---|---|---|
1 | \( v = v_i + a t \) | Use the kinematic equation for velocity. |
2 | For Ball A: \( v = -14.7 \, \text{m/s} + (-9.8 \, \text{m/s}^2)(1 \, \text{s}) = -24.5 \, \text{m/s} \) | Compute final velocity for Ball A. |
3 | For Ball B: \( v = +14.7 \, \text{m/s} + (-9.8 \, \text{m/s}^2)(4 \, \text{s}) = -24.5 \, \text{m/s} \) | Compute final velocity for Ball B. |
Answer: Each ball strikes the ground with a velocity of -24.5 m/s downward.
Step | Derivation/Formula | Explanation |
---|---|---|
1 | \( y = y_0 + v_i t + \frac{1}{2} a t^2 \) | Use the kinematic equation for position. |
2 | For Ball A: \( y_{\text{A}} = 19.6 + (-14.7)(0.8) + \frac{1}{2}(-9.8)(0.8)^2 \) | Compute position of Ball A at \( t = 0.8 \) s. |
3 | \( y_{\text{A}} = 19.6 -11.76 -3.136 = 4.704 \, \text{m} \) | Simplify to find \( y_{\text{A}} \). |
4 | For Ball B: \( y_{\text{B}} = 19.6 + (+14.7)(0.8) + \frac{1}{2}(-9.8)(0.8)^2 \) | Compute position of Ball B at \( t = 0.8 \) s. |
5 | \( y_{\text{B}} = 19.6 +11.76 -3.136 = 28.224 \, \text{m} \) | Simplify to find \( y_{\text{B}} \). |
6 | \( \Delta y = y_{\text{B}} – y_{\text{A}} = 28.224 – 4.704 = 23.52 \, \text{m} \) | Calculate the distance between the balls. |
Answer: The balls are 23.52 meters apart 0.800 seconds after they are thrown.
Just ask: "Help me solve this problem."
The displacement \( x \) of an object moving in one dimension is shown above as a function of time \( t \). The acceleration of this object must be
A car moving at 30 m/s makes a head-on collision with a stone wall. From what height would the car have to fall in order to make an equally hard collision with the ground?
A car is traveling 20 m/s when the driver sees a child standing on the road. She takes 0.8 s to react then steps on the brakes and slows at 7.0 m/s2. How far does the car go before it stops?
There are two cables that lift an elevator, each with a force of 10,000 N. The 1,000 kg elevator is lifted from the first floor and accelerates over 10 m until it reaches its top speed of 6 m/s. What is the mass of the people in the elevator?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.