0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| (a) How fast is the rocket traveling when the engine cuts off? | ||
| 1 | Use the kinematic equation:
\( v^2 = u^2 + 2 a s \) |
Relates final velocity, initial velocity, acceleration, and distance. |
| 2 | Substitute values:
\( v^2 = 0 + 2 \times 12.0 \times 1,000 \) |
Calculated \( v^2 \) using given values. |
| 3 | Solve for \( v \):
\( v = \sqrt{24,000} \approx 154.92 \, \text{m/s} \) |
Found the rocket’s speed at engine cutoff. |
| (b) What maximum height relative to the ground does the rocket reach? | ||
| 4 | After engine cutoff, use \( v^2 = u^2 + 2 a s \) with \( v = 0 \, \text{m/s} \), \( u = 154.92 \, \text{m/s} \), \( a = -9.8 \, \text{m/s}^2 \):
\( 0 = (154.92)^2 + 2 (-9.8) s \) |
Used kinematic equation for upward motion until velocity is zero. |
| 5 | Solve for \( s \):
\( s = \dfrac{(154.92)^2}{2 \times 9.8} \) |
Calculated additional height after engine cutoff. |
| 6 | Total maximum height:
\( h_{\text{total}} = 1,000 + 1,224.49 = 2,224.49 \, \text{m} \) |
Added initial altitude to additional height for total height. |
| (c) Velocity just before the rocket hits the earth. | ||
| 7 | Use \( v^2 = u^2 + 2 a s \) for free fall from maximum height with \( u = 0 \, \text{m/s} \), \( a = 9.8 \, \text{m/s}^2 \), \( s = 2,224.49 \, \text{m} \):
\( v^2 = 0 + 2 \times 9.8 \times 2,224.49 \) |
Calculated final velocity during descent. |
| 8 | Compute \( v^2 \):
\( v^2 = 43,598.00 \, \text{m}^2/\text{s}^2 \) |
Found velocity just before impact. |
| (d) Total amount of time the rocket was in the air. | ||
| 9 | **Time during powered ascent:**
Use \( s = u t + \dfrac{1}{2} a t^2 \) with \( s = 1,000 \, \text{m} \), \( u = 0 \, \text{m/s} \), \( a = 12.0 \, \text{m/s}^2 \): |
Calculated time for powered ascent. |
| 10 | Solve for \( t \):
\( t^2 = \dfrac{1,000}{6.0} \approx 166.67 \) |
Found time during powered ascent. |
| 11 | **Time during coasting ascent:**
Use \( v = u + a t \) with \( v = 0 \, \text{m/s} \), \( u = 154.92 \, \text{m/s} \), \( a = -9.8 \, \text{m/s}^2 \): |
Calculated time from engine cutoff to maximum height. |
| 12 | Solve for \( t \):
\( t = \dfrac{154.92}{9.8} \approx 15.81 \, \text{s} \) |
Found time during coasting ascent. |
| 13 | **Time during free fall descent:**
Use \( s = \dfrac{1}{2} a t^2 \) with \( s = 2,224.49 \, \text{m} \), \( a = 9.8 \, \text{m/s}^2 \): |
Calculated time for descent back to earth. |
| 14 | Solve for \( t \):
\( t^2 = \dfrac{2,224.49}{4.9} \approx 454.9996 \) |
Found time during free fall descent. |
| 15 | **Total time in the air:**
\( t_{\text{total}} = t_{\text{ascent}} + t_{\text{coasting}} + t_{\text{descent}} \) |
Summed all time intervals for total flight time. |
Just ask: "Help me solve this problem."
A cart starts from rest and accelerates uniformly at 4.0 m/s2 for 5.0 s. It next maintains the velocity it has reached for 10 s. Then it slows down at a steady rate of 2.0 m/s2 for 4.0 s. What is the final speed of the car?
A \(10 \, \text{kg}\) box is pushed to the right by an unknown force at an angle of \(25^\circ\) below the horizontal while a friction force of \(50 \, \text{N}\) acts on the box as well. The box accelerates from rest and travels a distance of \(4 \, \text{m}\) where it is moving at \(3 \, \text{m/s}\).
A cart is initially moving at 0.5 m/s along a track. The cart comes to rest after traveling 1 m. The experiment is repeated on the same track, but now the cart is initially moving at 1 m/s. How far does the cart travel before coming to rest?
Note: Answers may be off by \( \pm 0.2 \).
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?