AP Physics

Unit 1 - Vectors and Kinematics

Intermediate

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Step Derivation/Formula Reasoning
(a) The minimum velocity needed to hit the spaceship.
1 Use the kinematic equation to find minimum initial velocity \( v_0 \) to reach height \( h = 1500 \, \text{m} \):

\( v^2 = v_0^2 – 2 g h \)

At maximum height, final velocity \( v = 0 \).
2 Solve for \( v_0 \):

\( 0 = v_0^2 – 2 g h \)
\( v_0 = \sqrt{2 g h} \)

Rearranged equation to solve for \( v_0 \).
3 Substitute \( g = 9.8 \, \text{m/s}^2 \) and \( h = 1500 \, \text{m} \):

\( v_0 = \sqrt{2 \times 9.8 \times 1500} \)
\( v_0 = \sqrt{29,400} \approx 171.47 \, \text{m/s} \)

Calculated the minimum initial velocity.
(b) Time taken to reach maximum height when launched at 180 m/s.
4 Use the equation for velocity at maximum height \( v = v_0 – g t \):

At maximum height, \( v = 0 \). So:
\( 0 = 180 – 9.8 t \)

Set final velocity to zero to solve for time \( t \).
5 Solve for \( t \):

\( t = \dfrac{180}{9.8} \approx 18.37 \, \text{s} \)

Calculated time to reach maximum height.
(c) Maximum height the rocket reaches when launched at 180 m/s.
6 Use the kinematic equation:

\( h_{\text{max}} = \dfrac{v_0^2}{2 g} \)
\( h_{\text{max}} = \dfrac{(180)^2}{2 \times 9.8} \)

Calculated maximum height using initial speed.
7 Compute \( h_{\text{max}} \):

\( h_{\text{max}} = \dfrac{32,400}{19.6} \approx 1,653.06 \, \text{m} \)

Found the maximum height reached.
(d) Velocity and time of impact with the spacecraft.
8 Use vertical motion equation to find time \( t \) when \( y = 1500 \, \text{m} \):

\( y = v_0 t – \dfrac{1}{2} g t^2 \)
\( 1500 = 180 t – 4.9 t^2 \)

Set up equation for position at impact height.
9 Rearrange into quadratic form:

\( -4.9 t^2 + 180 t – 1500 = 0 \)
Multiply both sides by \(-1\):
\( 4.9 t^2 – 180 t + 1500 = 0 \)

Prepared equation for quadratic formula.
10 Use quadratic formula \( t = \dfrac{-b \pm \sqrt{b^2 – 4 a c}}{2 a} \):

\( a = 4.9 \), \( b = -180 \), \( c = 1500 \)
\( D = b^2 – 4 a c = (-180)^2 – 4(4.9)(1500) \)
\( D = 32,400 – 29,400 = 3,000 \)

Calculated discriminant \( D \).
11 Solve for \( t \):

\( t = \dfrac{-(-180) \pm \sqrt{3,000}}{2 \times 4.9} \)
\( t = \dfrac{180 \pm 54.77}{9.8} \)
Possible times:
\( t_1 = \dfrac{180 + 54.77}{9.8} \approx 23.96 \, \text{s} \)
\( t_2 = \dfrac{180 – 54.77}{9.8} \approx 12.78 \, \text{s} \)

Found two times when rocket is at \( 1500 \, \text{m} \).
12 Choose the most likely ascending time \( t = 12.78 \, \text{s} \) (on way up). The rocket hits the spacecraft on its ascent.
13 Calculate velocity at impact:

\( v = v_0 – g t \)
\( v = 180 – 9.8 \times 12.78 \)
\( v = 180 – 125.24 \approx 54.76 \, \text{m/s} \)

Determined velocity upon reaching the spacecraft.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. Minimum Initial Velocity: \( 171.47 \, \text{m/s} \)
  2. Time to Maximum Height: \( 18.37 \, \text{s} \)
  3. Maximum Height Reached: \( 1,653.06 \, \text{m} \)
  4. Velocity at Impact: \( 54.76 \, \text{m/s} \) upward
  5. Time of Impact: \( 12.78 \, \text{s} \)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.