AP Physics

Unit 1 - Vectors and Kinematics

Intermediate

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

# Part (a): At what times is the object 20 m above the ground?

Step Derivation/Formula Reasoning
1 [katex]y = v_0 t + \frac{1}{2} a t^2[/katex] Use the kinematic equation for vertical displacement where [katex]y[/katex] is the height, [katex]v_0[/katex] is the initial velocity, [katex]t[/katex] is the time, and [katex]a[/katex] is the acceleration.
2 [katex]20 = 64 t – \frac{1}{2} \cdot 9.8 \cdot t^2[/katex] Substitute [katex]y = 20 \text{ m}[/katex], [katex]v_0 = 64 \text{ m/s}[/katex], and [katex]a = -9.8 \text{ m/s}^2[/katex]. Note the negative sign of acceleration due to gravity.
3 [katex]4.9 t^2 – 64 t + 20 = 0[/katex] Rearrange the equation into standard quadratic form [katex]a t^2 + b t + c = 0[/katex] where [katex]a = 4.9[/katex], [katex]b = -64[/katex], and [katex]c = 20[/katex].
4 [katex]t = \frac{64 \pm \sqrt{(-64)^2 – 4 \cdot 4.9 \cdot 20}}{2 \cdot 4.9}[/katex] Use the quadratic formula [katex]t = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}[/katex] to solve for [katex]t[/katex].
5 [katex]t_1 = \frac{64 + 60.88}{9.8} \approx 12.74 \text{ s}, \\ t_2 = \frac{64 – 60.88}{9.8} \approx 0.32 \text{ s}[/katex] Calculate the two possible values for [katex]t[/katex]. The results are [katex]t_1 \approx 12.74 \text{ s}[/katex] and [katex]t_2 \approx 0.32 \text{ s}[/katex].
6 [katex]t = 0.32 \text{ s}, 12.74 \text{ s}[/katex] Final answer: There are two times when the object is 20 m above the ground, at [katex]0.32 \text{ s}[/katex] and [katex]12.74 \text{ s}[/katex].

# Part (b): Why are there two answers for part (a)?

Step Explanation Reasoning
1 Two Answers Explanation There are two answers because the object passes 20 m twice: once while going up and once while coming back down.

# Part (c): How long does it take to come back to the ground?

Step Derivation/Formula/Answer Reasoning
1 [katex]y = v_0 t + \frac{1}{2} a t^2[/katex] Use the kinematic equation for vertical displacement where [katex]y[/katex] is zero as it returns to the ground.
2 [katex]0 = 64 t – \frac{1}{2} \cdot 9.8 \cdot t^2[/katex] Substitute [katex]y = 0 \text{ m}[/katex], [katex]v_0 = 64 \text{ m/s}[/katex], and [katex]a = -9.8 \text{ m/s}^2[/katex].
3 [katex]0 = 64 t – 4.9 t^2[/katex] Simplify the equation by calculating [katex]\frac{1}{2} \cdot 9.8 = 4.9[/katex].
4 [katex]0 = t (64 – 4.9t)[/katex] Factor out [katex]t[/katex] to solve for the time at which the object returns to the ground.
5 [katex]t = 0 \quad \text{or} \quad 64 = 4.9t \Rightarrow t = \frac{64}{4.9} \approx 13.06 \text{ s}[/katex] The first solution [katex]t = 0[/katex] corresponds to the initial throw. Solving [katex]64 – 4.9t = 0[/katex] gives the time it takes to reach the ground.
6 [katex]t = 13.06 \text{ s}[/katex] Final answer: The object takes [katex]13.06 \text{ s}[/katex] to come back to the ground.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. [katex]t = 0.32 \text{ s}, 12.74 \text{ s}[/katex]
  2. There are two answers because the object passes 20 m twice: once while going up and once while coming back down.
  3. [katex]t = 13.06 \text{ s}[/katex]

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.