0 attempts
0% avg
UBQ Credits
Objective: Find the shortest time in which the person can be brought out of the cave without breaking the rope.
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]F_{\text{net}} = T – w[/katex] | The net force is the tension minus the weight of the person. |
2 | [katex]F_{\text{net}} = ma[/katex] | Newton’s second law, net force equals mass times acceleration. |
3 | [katex]T = w + ma[/katex] | Rewrite the net force equation to solve for tension. |
4 | [katex]a = \frac{T – w}{m}[/katex] | Isolate acceleration, [katex]a[/katex]. |
5 | [katex]m = \frac{w}{g}[/katex] | The mass of the person is weight divided by gravitational acceleration. |
6 | [katex]a = \frac{T – w}{w/g}[/katex] | Substitute [katex]m[/katex] with [katex]w/g[/katex] into the acceleration equation. |
7 | [katex]a = \frac{g(T – w)}{w}[/katex] | Rearrange the equation for [katex]a[/katex]. |
8 | [katex]a = \frac{9.8\text{ m/s}^2(592\text{ N} – 4.92 \times 10^2\text{ N})}{4.92 \times 10^2\text{ N}}[/katex] | Substitute the values of [katex]T[/katex], [katex]w[/katex], and [katex]g[/katex]. |
9 | [katex]a = \frac{9.8\text{ m/s}^2(592\text{ N} – 492\text{ N})}{492\text{ N}}[/katex] | Calculate the values in the parentheses. |
10 | [katex]a = \frac{9.8\text{ m/s}^2 \times 100\text{ N}}{492\text{ N}}[/katex] | Simplify the numerator. |
11 | [katex]a = 2\text{ m/s}^2[/katex] | Calculate the acceleration. |
For the Shortest Time
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]d = \frac{1}{2}at^2[/katex] | Kinematic equation for distance with initial velocity zero. |
2 | [katex]t = \sqrt{\frac{2d}{a}}[/katex] | Solve for time, [katex]t[/katex]. |
3 | [katex]t = \sqrt{\frac{2 \times 35.2\text{ m}}{2\text{ m/s}^2}}[/katex] | Substitute the values of [katex]d[/katex] and [katex]a[/katex]. |
4 | [katex]t = \sqrt{\frac{70.4\text{ m}}{2\text{ m/s}^2}}[/katex] | Multiply the numerator. |
5 | [katex]t = \sqrt{35.2\text{ s}^2}[/katex] | Divide the numerator by the acceleration. |
6 | [katex]t = 5.934\text{ s}[/katex] | Take the square root to find time. |
Final answer for the shortest time: [katex]\boxed{t = 5.934\text{ s}}[/katex]
Phy can also check your working. Just snap a picture!
A vehicle is moving at a speed of 12.3 m/s on a decline when the brakes of all four wheels are fully applied, causing them to lock. The slope of the decline forms an angle of 18.0 degrees with the horizontal plane. Given that the coefficient of kinetic friction between the tires and the road surface is 0.650.
A 1 kg and unknown mass M hangs on opposite sides of the pulley suspended from the ceiling. When the masses are released, M accelerates down at 5 m/s2. Find the value of M.
Can an object’s average velocity equal zero when object’s speed is greater than zero?
Which pair of graphs represents the same 1- dimensional motion?
On a harsh winter day, a 1500 kg vehicle takes a circular banked exit ramp (radius R = 150 m; banking angle of 10 degrees) at a speed of 30 mph, since the speed limit is 35 mph. However, the exit ramp is completely iced up (= frictionless). To make matters worse, a wind is blowing parallel to the ramp in a downward direction. The wind exerts a force of 3000 N. Under these conditions, can the driver continue to follow a safe horizontal circle on the exit ramp and stay below the speed limit? To convert mph into m/s use 1 mi = 1607 m and 1 hr is 3600 s.
t = 5.94 s
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex] | [katex]F = ma[/katex] |
[katex]v = v_i + at[/katex] | [katex]F_g = \frac{G m_1m_2}{r^2}[/katex] |
[katex]a = \frac{\Delta v}{\Delta t}[/katex] | [katex]f = \mu N[/katex] |
[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex] |
Circular Motion | Energy |
---|---|
[katex]F_c = \frac{mv^2}{r}[/katex] | [katex]KE = \frac{1}{2} mv^2[/katex] |
[katex]a_c = \frac{v^2}{r}[/katex] | [katex]PE = mgh[/katex] |
[katex]KE_i + PE_i = KE_f + PE_f[/katex] |
Momentum | Torque and Rotations |
---|---|
[katex]p = m v[/katex] | [katex]\tau = r \cdot F \cdot \sin(\theta)[/katex] |
[katex]J = \Delta p[/katex] | [katex]I = \sum mr^2[/katex] |
[katex]p_i = p_f[/katex] | [katex]L = I \cdot \omega[/katex] |
Simple Harmonic Motion |
---|
[katex]F = -k x[/katex] |
[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex] |
[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex] |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
UBQ credits are specifically used to grade your FRQs and GQs.
You can still view questions and see answers without credits.
Submitting an answer counts as 1 attempt.
Seeing answer or explanation counts as a failed attempt.
Lastly, check your average score, across every attempt, in the top left.
MCQs are 1 point each. GQs are 1 point. FRQs will state points for each part.
Phy can give partial credit for GQs & FRQs.
Phy sees everything.
It customizes responses, explanations, and feedback based on what you struggle with. Try your best on every question!
Understand you mistakes quicker.
For GQs and FRQs, Phy provides brief feedback as to how you can improve your answer.
Aim to increase your understadning and average score with every attempt!
10 Free Credits To Get You Started
*Phy Pro members get unlimited credits
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.