0 attempts

0% avg

UBQ Credits

**Part 1: Calculate the distance traveled at \(20 \, \text{m/s}\) for 5 minutes**

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | \( t_1 = 5 \, \text{minutes} = 300 \, \text{seconds} \) | Convert the time from minutes to seconds since the speed is given in meters per second. |

2 | \( v_1 = 20 \, \text{m/s} \) | The initial speed of the car is \(20 \, \text{m/s}\). |

3 | \( \Delta x_1 = v_1 \cdot t_1 \) | Use the formula for distance: \( \Delta x = v \cdot t \). |

4 | \( \Delta x_1 = 20 \, \text{m/s} \cdot 300 \, \text{s} = 6000 \, \text{m} \) | Calculate the distance traveled at the initial speed. |

**Part 2: Calculate the distance traveled at \(40 \, \text{m/s}\) for an additional 2 km**

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | \( \Delta x_2 = 2 \, \text{km} = 2000 \, \text{m} \) | Convert the distance from kilometers to meters. |

2 | \( v_2 = 40 \, \text{m/s} \) | The speed of the car in the second part of the trip is \(40 \, \text{m/s}\). |

3 | \( t_2 = \frac{\Delta x_2}{v_2} \) | Use the formula for time: \( t = \frac{\Delta x}{v} \). |

4 | \( t_2 = \frac{2000 \, \text{m}}{40 \, \text{m/s}} = 50 \, \text{s} \) | Calculate the time taken to travel the additional distance. |

**Part 3: Calculate the total distance and total time of travel**

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | \( \Delta x_{\text{total}} = \Delta x_1 + \Delta x_2 \) | The total distance is the sum of the distances traveled in each part of the trip found in part 1 and 2. |

2 | \( \Delta x_{\text{total}} = 6000 \, \text{m} + 2000 \, \text{m} = 8000 \, \text{m} \) | Calculate the total distance traveled. |

3 | \( t_{\text{total}} = t_1 + t_2 \) | The total time is the sum of the times taken in each part of the trip. |

4 | \( t_{\text{total}} = 300 \, \text{s} + 50 \, \text{s} = 350 \, \text{s} \) | Calculate the total time of travel. |

**Answer:**

Total Distance | Total Time |
---|---|

\( \boxed{8000 \, \text{m}} \) | \( \boxed{350 \, \text{s}} \) |

Just ask: "Help me solve this problem."

- Statistics

Advanced

Conceptual

MCQ

Two balls are dropped off a cliff, 3 seconds apart. The first ball dropped is twice as heavy as the second ball dropped. Air resistance is negligible. While both balls are falling, the distance between the two balls is

- 1D Kinematics, Free Fall

Advanced

Conceptual

MCQ

Toy car W travels across a horizontal surface with an acceleration of \( a_w \) after starting from rest. Toy car Z travels across the same surface toward car W with an acceleration of \( a_z \), after starting from rest. Car W is separated from car Z by a distance \( d \). Which of the following pairs of equations could be used to determine the location on the horizontal surface where the two cars will meet, and why?

- 1D Kinematics

Intermediate

Conceptual

MCQ

Which of the following graphs represent an object having zero acceleration? (There could be more than one answer)

- Motion Graphs

Beginner

Mathematical

FRQ

On Saturday, Ashley rode her bicycle to visit Maria. Maria’s house is directly east of Ashley’s. The graph shows how far Ashley was from her house after each minute of her trip.(Hint – Use the standard units of velocity (m/s) for all parts)

- Motion Graphs

Advanced

Conceptual

MCQ

A block is projected up a ramp with an initial speed \( v_0 \). It travels along the surface of the ramp with constant acceleration \( a \). Take the positive direction of motion to be up the ramp. If the acceleration vector points opposite the initial velocity vector, which of the following MUST be true?

- 1D Kinematics

Total distance traveled: \( 8,000 \, \text{m} \)

Total time of travel: \( 350 \, \text{s} \)

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |

\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |

\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |

\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |

\(v^2 = v_f^2 \,-\, 2a \Delta x\) |

Circular Motion | Energy |
---|---|

\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |

\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |

\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |

\(W = Fd \cos\theta\) |

Momentum | Torque and Rotations |
---|---|

\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |

\(J = \Delta p\) | \(I = \sum mr^2\) |

\(p_i = p_f\) | \(L = I \cdot \omega\) |

Simple Harmonic Motion | Fluids |
---|---|

\(F = -kx\) | \(P = \frac{F}{A}\) |

\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |

\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |

\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |

\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |

Constant | Description |
---|---|

[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |

[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |

[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |

[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |

[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |

[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |

[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |

Variable | SI Unit |
---|---|

[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |

[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |

[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |

[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |

[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |

Variable | Derived SI Unit |
---|---|

[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |

[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |

[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |

[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |

[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |

[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |

[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |

[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`[katex]\text{5 km}[/katex]`

Use the conversion factors for kilometers to meters and meters to millimeters:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]`

Perform the multiplication:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]`

Simplify to get the final answer:

`[katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |

Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |

Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |

Milli- | m | [katex]10^{-3}[/katex] | 0.001 |

Centi- | c | [katex]10^{-2}[/katex] | 0.01 |

Deci- | d | [katex]10^{-1}[/katex] | 0.1 |

(Base unit) | – | [katex]10^{0}[/katex] | 1 |

Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |

Hecto- | h | [katex]10^{2}[/katex] | 100 |

Kilo- | k | [katex]10^{3}[/katex] | 1,000 |

Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |

Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |

Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |

- 1. Some answers may vary by 1% due to rounding.
- Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
- Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
- Bookmark questions you can’t solve to revisit them later
- 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages and Images
- Unlimited UBQ Credits
- 157% Better than GPT
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- All Smart Actions
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.

Submitting counts as 1 attempt.

Viewing answers or explanations count as a failed attempts.

Phy gives partial credit if needed

MCQs and GQs are are 1 point each. FRQs will state points for each part.

Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.

Understand you mistakes quicker.

Phy automatically provides feedback so you can improve your responses.

10 Free Credits To Get You Started