0 attempts

0% avg

UBQ Credits

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | \( v_i = 40 \, \text{m/s} \) | Initial velocity of the car before the driver reacts to the red light. |

2 | \( t_{\text{reaction}} = 0.9 \, \text{s} \) | Time taken for the driver to react and hit the brakes. |

3 | \( v_x = 40 \, \text{m/s} \) | Car continues to travel with initial velocity during the reaction time. |

4 | \( \Delta x_{\text{reaction}} = v_i \cdot t_{\text{reaction}} \) | Distance traveled during the driver’s reaction time. |

5 | \( \Delta x_{\text{reaction}} = 40 \, \text{m/s} \times 0.9 \, \text{s} \) | Substituting the values for initial velocity and reaction time. |

6 | \( \Delta x_{\text{reaction}} = 36 \, \text{m} \) | Calculate the distance traveled during the reaction time. |

7 | \( a = -3.5 \, \text{m/s}^2 \) | Determine the acceleration (deceleration) after the driver hits the brakes. |

8 | \( v_f = 0 \, \text{m/s} \) | Final velocity of the car when it comes to a stop. |

9 | \( v_f^2 = v_i^2 + 2a \Delta x_{\text{braking}} \) | Using the kinematic equation to solve for the braking distance \( \Delta x_{\text{braking}} \). |

10 | \( 0 = (40 \, \text{m/s})^2 + 2(-3.5 \, \text{m/s}^2) \Delta x_{\text{braking}} \) | Substitute the values of initial velocity, acceleration, and final velocity into the kinematic equation. |

11 | \( 0 = 1600 \, \text{m}^2/\text{s}^2 – 7 \, \text{m/s}^2 \Delta x_{\text{braking}} \) | Simplify the equation by performing the multiplications and adding/subtracting. |

12 | \( 7 \, \text{m/s}^2 \Delta x_{\text{braking}} = 1600 \, \text{m}^2/\text{s}^2 \) | Rearrange the equation to isolate \( \Delta x_{\text{braking}} \). |

13 | \( \Delta x_{\text{braking}} = \frac{1600 \, \text{m}^2/\text{s}^2}{7 \, \text{m/s}^2} \) | Divide both sides by the coefficient of \( \Delta x_{\text{braking}} \). |

14 | \( \Delta x_{\text{braking}} = 228.57 \, \text{m} \) | Calculate the braking distance. |

15 | \( \Delta x_{\text{total}} = \Delta x_{\text{reaction}} + \Delta x_{\text{braking}} \) | Total distance traveled is the sum of the reaction distance and the braking distance. |

16 | \( \Delta x_{\text{total}} = 36 \, \text{m} + 228.57 \, \text{m} \) | Substitute the values into the total distance equation. |

17 | \( \Delta x_{\text{total}} = 264.57 \, \text{m} \) |
Final distance traveled by the car before coming to a complete stop. |

Just ask: "Help me solve this problem."

- Statistics

Advanced

Mathematical

MCQ

*v*, and reaches a maximum height *h*. At what height was the baseball moving with one-half its original velocity? Assume air resistance is negligible.

- 1D Kinematics, Energy

Intermediate

Proportional Analysis

MCQ

The driver of a car makes an emergency stop by slamming on the car’s brakes and skidding to a stop. How far would the car have skidded if it had been traveling twice as fast?

- 1D Kinematics

Advanced

Mathematical

MCQ

A particle moves along the x-axis with an acceleration of \( a = 18t \), where \( a \) has units of \( \text{m/s}^2 \). If the particle at time \( t = 0 \) is at the origin with a velocity of \( -12 \, \text{m/s} \), what is its position at \( t = 4.0 \, \text{s} \)? Note this requires calculus to solve.

- 1D Kinematics

Advanced

Mathematical

FRQ

- 1D Kinematics

Intermediate

Mathematical

MCQ

The graph in the figure shows the position of a particle as it travels along the x-axis. At what value of \(t\) is the speed of the particle equal to \(0 \, \text{m/s}\)?

note that the slope of position vs time is velocity. And the graph most closely reemsbles a flat or 0 slope at 3 seconds

- 1D Kinematics, Motion Graphs

\( \Delta x_{\text{total}} = 264.57 \, \text{m} \)

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |

\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |

\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |

\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |

\(v^2 = v_f^2 \,-\, 2a \Delta x\) |

Circular Motion | Energy |
---|---|

\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |

\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |

\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |

\(W = Fd \cos\theta\) |

Momentum | Torque and Rotations |
---|---|

\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |

\(J = \Delta p\) | \(I = \sum mr^2\) |

\(p_i = p_f\) | \(L = I \cdot \omega\) |

Simple Harmonic Motion | Fluids |
---|---|

\(F = -kx\) | \(P = \frac{F}{A}\) |

\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |

\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |

\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |

\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |

Constant | Description |
---|---|

[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |

[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |

[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |

[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |

[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |

[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |

[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |

Variable | SI Unit |
---|---|

[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |

[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |

[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |

[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |

[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |

Variable | Derived SI Unit |
---|---|

[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |

[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |

[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |

[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |

[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |

[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |

[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |

[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`[katex]\text{5 km}[/katex]`

Use the conversion factors for kilometers to meters and meters to millimeters:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]`

Perform the multiplication:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]`

Simplify to get the final answer:

`[katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |

Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |

Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |

Milli- | m | [katex]10^{-3}[/katex] | 0.001 |

Centi- | c | [katex]10^{-2}[/katex] | 0.01 |

Deci- | d | [katex]10^{-1}[/katex] | 0.1 |

(Base unit) | – | [katex]10^{0}[/katex] | 1 |

Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |

Hecto- | h | [katex]10^{2}[/katex] | 100 |

Kilo- | k | [katex]10^{3}[/katex] | 1,000 |

Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |

Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |

Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |

- 1. Some answers may vary by 1% due to rounding.
- Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
- Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
- Bookmark questions you can’t solve to revisit them later
- 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages and Images
- Unlimited UBQ Credits
- 157% Better than GPT
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- All Smart Actions
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.

Submitting counts as 1 attempt.

Viewing answers or explanations count as a failed attempts.

Phy gives partial credit if needed

MCQs and GQs are are 1 point each. FRQs will state points for each part.

Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.

Understand you mistakes quicker.

Phy automatically provides feedback so you can improve your responses.

10 Free Credits To Get You Started