AP Physics Unit

Unit 4 - Energy

Advanced

Proportional Analysis

MCQ

Ball A of mass m is dropped from a building of height H. Ball B of mass 1.7m is dropped from a building of height 3.5H. Using energy, what the ratio of vA to vB (final velocity of ball A to final velocity of ball B). Air resistance is negligible.

  1. \sqrt{\frac{1}{6}} .

  2. \sqrt{\frac{2}{7}} .

  3. \frac{2}{5} .

  4. \frac{1}{3.5}
  5. \frac{2}{5}
Step Formula Derivation Reasoning
1 E_{\text{total}} = E_{\text{kinetic}} + E_{\text{potential}} Total mechanical energy is the sum of kinetic and potential energy.
2 E_{\text{kinetic}} = \frac{1}{2}mv^2 Kinetic energy formula, where E_{\text{kinetic}} is kinetic energy, m is mass, and v is velocity.
3 E_{\text{potential}} = mgh Potential energy formula, where E_{\text{potential}} is potential energy, h is height, and g is gravitational acceleration.
4 At the top, E_{\text{total}} = E_{\text{potential}} Initially, all energy is potential energy since velocity is zero.
5 At the bottom, E_{\text{total}} = E_{\text{kinetic}} At the bottom, all energy is converted to kinetic energy, assuming negligible air resistance.
6 mgh = \frac{1}{2}mv^2 Equating potential energy at the top with kinetic energy at the bottom.
7 2gh = v^2 Cancel m and rearrange the equation.
8 v = \sqrt{2gh} Take the square root to find v .
9 v_A = \sqrt{2gH} Apply the formula to ball A, dropped from height H .
10 v_B = \sqrt{2g \cdot 3.5H} Apply the formula to ball B, dropped from height 3.5H .
11 \frac{v_A}{v_B} = \frac{\sqrt{2gH}}{\sqrt{7gH}} Compare the velocities of the two balls.
12 \boxed{\frac{v_A}{v_B} = \sqrt{\frac{2}{7}}} Simplify to find the ratio.

The derivation uses energy principles to arrive at the final velocity formula, and the ratio of velocities of ball A to ball B is \sqrt{\frac{2}{7}} .

Check With Phy

Solve. Take a picture. Upload. Phy will grade your working.

Simple Chat Box
Ask Phy About This MCQ

Phy Beta V5 (1.28.24) – Systems Operational.

Topics in this question

Discover how students preformed on this question | Coming Soon

Discussion Threads

Leave a Reply

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Share Your Feedback.

What went wrong? Found something incorrect? OR just want to tell us to add/improve something on this page? We listen to all your feedback!

You must be signed in to leave feedback

Nerd-Notes.com
KinematicsForces
\Delta x = v_i t + \frac{1}{2} at^2F = ma
v = v_i + atF_g = \frac{G m_1m_2}{r^2}
a = \frac{\Delta v}{\Delta t}f = \mu N
R = \frac{v_i^2 \sin(2\theta)}{g} 
Circular MotionEnergy
F_c = \frac{mv^2}{r}KE = \frac{1}{2} mv^2
a_c = \frac{v^2}{r}PE = mgh
 KE_i + PE_i = KE_f + PE_f
MomentumTorque and Rotations
p = m v\tau = r \cdot F \cdot \sin(\theta)
J = \Delta pI = \sum mr^2
p_i = p_fL = I \cdot \omega
Simple Harmonic Motion
F = -k x
T = 2\pi \sqrt{\frac{l}{g}}
T = 2\pi \sqrt{\frac{m}{k}}
ConstantDescription
gAcceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface
GUniversal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2
\mu_k and \mu_sCoefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion.
kSpring constant, in \text{N/m}
M_E = 5.972 \times 10^{24} , \text{kg} Mass of the Earth
M_M = 7.348 \times 10^{22} , \text{kg} Mass of the Moon
M_M = 1.989 \times 10^{30} , \text{kg} Mass of the Sun
VariableSI Unit
s (Displacement)\text{meters (m)}
v (Velocity)\text{meters per second (m/s)}
a (Acceleration)\text{meters per second squared (m/s}^2\text{)}
t (Time)\text{seconds (s)}
m (Mass)\text{kilograms (kg)}
VariableDerived SI Unit
F (Force)\text{newtons (N)}
E, PE, KE (Energy, Potential Energy, Kinetic Energy)\text{joules (J)}
P (Power)\text{watts (W)}
p (Momentum)\text{kilogram meters per second (kgm/s)}
\omega (Angular Velocity)\text{radians per second (rad/s)}
\tau (Torque)\text{newton meters (Nm)}
I (Moment of Inertia)\text{kilogram meter squared (kgm}^2\text{)}
f (Frequency)\text{hertz (Hz)}

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: \text{5 km}

  2. Use the conversion factors for kilometers to meters and meters to millimeters: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}

  3. Perform the multiplication: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}

  4. Simplify to get the final answer: \boxed{5 \times 10^6 \, \text{mm}}

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

10^{-12}

Nano-

n

10^{-9}

Micro-

µ

10^{-6}

Milli-

m

10^{-3}

Centi-

c

10^{-2}

Deci-

d

10^{-1}

(Base unit)

10^{0}

Deca- or Deka-

da

10^{1}

Hecto-

h

10^{2}

Kilo-

k

10^{3}

Mega-

M

10^{6}

Giga-

G

10^{9}

Tera-

T

10^{12}

  1. Some answers may be slightly off by 1% depending on rounding, etc.
  2. Answers will use different values of gravity. Some answers use 9.81 m/s2, and other 10 m/s2 for calculations.
  3. Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
  4. Bookmark questions that you can’t solve so you can come back to them later. 
  5. Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

Jason here! Feeling uneasy about your next physics test? I will help boost your grades in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.