0 attempts
0% avg
UBQ Credits
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]F_{\text{parallel}} = mg\sin(\theta)[/katex] | Force parallel to the incline, where [katex]m[/katex] is mass, [katex]g[/katex] is acceleration due to gravity, and [katex]\theta[/katex] is the incline angle. |
2 | [katex]F_{\text{normal}} = mg\cos(\theta)[/katex] | Normal force, perpendicular to the incline. |
3 | [katex]F_{\text{friction}} = \mu_k F_{\text{normal}}[/katex] | Frictional force, where [katex]\mu_k[/katex] is the coefficient of kinetic friction. |
4 | [katex]F_{\text{friction}} = 0.250 \times mg\cos(25^\circ)[/katex] | Substitute values for [katex]\mu_k[/katex] and [katex]F_{\text{normal}}[/katex]. |
5 | [katex]F_{\text{pull}} = F_{\text{parallel}} + F_{\text{friction}}[/katex] | Total force to pull the crate includes parallel force and frictional force. |
6 | [katex]F_{\text{pull}} = mg\sin(25^\circ) + 0.250 \times mg\cos(25^\circ)[/katex] | Combine parallel and frictional forces. |
7 | [katex]W_{\text{output}} = F_{\text{parallel}} \times d[/katex] | Work output, where [katex]F_{\text{parallel}}[/katex] is the force parallel to the incline and [katex]d[/katex] is the distance. |
8 | [katex]W_{\text{output}} = mg\sin(25^\circ) \times 2.5[/katex] | Work done against gravity. |
9 | [katex]W_{\text{input}} = F_{\text{pull}} \times d[/katex] | Work input, force to pull the crate. |
10 | [katex]W_{\text{input}} = \left( mg\sin(25^\circ) + 0.250 \times mg\cos(25^\circ) \right) \times 2.5[/katex] | Work done to pull the crate including overcoming friction. |
11 | [katex]\text{Efficiency} = \frac{W_{\text{output}}}{W_{\text{input}}} \times 100%[/katex] | Efficiency formula. |
12 | [katex]\text{Efficiency} = \frac{mg\sin(25^\circ) \times 2.5}{\left( mg\sin(25^\circ) + 0.250 \times mg\cos(25^\circ) \right) \times 2.5} \times 100%[/katex] | Substitute [katex]W_{\text{output}}[/katex] and [katex]W_{\text{input}}[/katex]. |
13 | [katex]\text{Efficiency} = \frac{\sin(25^\circ)}{\sin(25^\circ) + 0.250 \times \cos(25^\circ)} \times 100%[/katex] | Simplify by canceling [katex]mg[/katex] and [katex]d[/katex]. |
14 | [katex]\text{Efficiency} = 65.10\%[/katex] | Calculated efficiency. |
Just ask: "Help me solve this problem."
A force F is exerted by a broom handle on the head of a broom, which has a mass m. The handle is at an angle θ to the horizontal. The work done by the force on the head of the broom as it moves a distance d across a horizontal floor is:
Two balls are thrown off a building with the same speed, one straight up and one at a 45° angle. Which statement is true if air resistance can be ignored?
Jill does twice as much work as Jack does and in half the time. Jill’s power output is
A 0.5 kg cart, on a frictionless 2 m long table, is being pulled by a 0.1 kg mass connected by a string and hanging over a pulley. The system is released from rest. After the hanging mass falls 0.5 m, calculate the speed of the cart on the table. Use ONLY forces and energy.
A block of mass [katex] m [/katex] is moving on a horizontal frictionless surface with a speed [katex] v_0 [/katex] as it approaches a block of mass [katex] 2m [/katex] which is at rest and has an ideal spring attached to one side.
When the two blocks collide, the spring is completely compressed and the two blocks momentarily move at the same speed, and then separate again, each continuing to move.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.