0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 (a) | [katex] v = r \omega [/katex] | For rolling motion, the linear velocity [katex] v [/katex] at the bottom is related to the angular velocity [katex] \omega [/katex] by the radius [katex] r [/katex]. Here, the radius [katex] r [/katex] is 0.16 m. |
2 (a) | [katex] \omega = \frac{v}{r} [/katex] | Calculate the angular velocity [katex] \omega [/katex] at the bottom using the given linear velocity [katex] v = 3.2 \, \text{m/s} [/katex]. |
3 (a) | [katex] \omega = \frac{3.2 \, \text{m/s}}{0.16 \, \text{m}} = 20 \, \text{rad/s} [/katex] | Substitute the values into the equation to find [katex] \omega [/katex]. |
4 (a) | [katex] \alpha = \frac{\omega}{t} [/katex] | Angular acceleration [katex] \alpha [/katex] is calculated using the angular velocity [katex] \omega [/katex] and the time [katex] t [/katex] it takes to reach that angular velocity. |
5 (a) | [katex] v^2 = v_0^2 + 2aL [/katex] | Using the kinematic equation for linear motion, where [katex] a [/katex] is linear acceleration and [katex] L = 1.5 \, \text{m} [/katex] is the length of the incline. |
6 (a) | [katex] 3.2^2 = 0 + 2a \times 1.5 [/katex] | [katex] a = \frac{(3.2)^2}{2 \times 1.5} = \frac{10.24}{3} \approx 3.413 \, \text{m/s}^2 [/katex] |
7 (a) | [katex] a = r\alpha [/katex] | Relate linear acceleration [katex] a [/katex] to angular acceleration [katex] \alpha [/katex]. |
8 (a) | [katex] \alpha = \frac{a}{r} = \frac{3.413 \, \text{m/s}^2}{0.16 \, \text{m}} \approx 21.33 \, \text{rad/s}^2 [/katex] | Compute angular acceleration [katex] \alpha [/katex]. |
1 (b) | [katex] \omega = \alpha t [/katex] | Use the equation for angular velocity [katex] \omega [/katex] related to angular acceleration [katex] \alpha [/katex] and time [katex] t [/katex]. |
2 (b) | [katex] \omega_{\text{rpm}} = 7329 = \omega \frac{60}{2\pi} [/katex] | Convert [katex] \omega [/katex] from rpm to rad/s for calculation. |
3 (b) | [katex] \omega = 7329 \cdot \frac{2\pi}{60} \approx 767.23 \, \text{rad/s} [/katex] | Find [katex] \omega [/katex] in rad/s. |
4 (b) | [katex] t = \frac{\omega}{\alpha} = \frac{767.23}{419} \approx 1.83 \, \text{s} [/katex] | Compute the time [katex] t [/katex]. |
1 (c) | [katex] \Delta \omega = \alpha \Delta t [/katex] | Angular velocity change [katex] \Delta \omega [/katex] is given, calculate the time [katex] \Delta t [/katex] using angular acceleration [katex] \alpha [/katex]. |
2 (c) | [katex] \Delta \omega = 33.3 \, \text{rad/s} – 3.33 \, \text{rad/s} = 29.97 \, \text{rad/s} [/katex] | Calculate the change in angular velocity [katex] \Delta \omega [/katex]. |
3 (c) | [katex] \Delta t = \frac{\Delta \omega}{\alpha} = \frac{29.97}{5.15} \approx 5.82 \, \text{s} [/katex] | Calculate the time [katex] \Delta t [/katex] needed to reach the final angular velocity. |
Just ask: "Help me solve this problem."
A high-speed drill rotating counterclockwise at \( 2400 \) \( \text{rpm} \) comes to a halt in \( 2.5 \) \( \text{s} \).
A disk increases from 2 complete revolutions in 2 seconds to 5 complete revolutions in 2 seconds. What is its average angular acceleration?
When a fan is turned off, its angular speed decreases from \( 10 \) \( \text{rad/s} \) to \( 6.3 \) \( \text{rad/s} \) in \( 5.0 \) \( \text{s} \). What is the magnitude of the average angular acceleration of the fan?
The angular velocity of an electric motor is \( \omega = \left(20 – \frac{1}{2} t^2 \right) \, \text{rad/s} \), where \(t\) is in seconds.
The driver of a car traveling at \( 30.0 \) \( \text{m/s} \) applies the brakes and undergoes a constant negative acceleration of \( 2.00 \) \( \text{m/s}^2 \). How many revolutions does each tire make before the car comes to a stop, assuming that the car does not skid and that the tires have radii of \( 0.300 \) \( \text{m} \)?
(a) Angular acceleration of the ball is [katex] \approx 21.33 \, \text{rad/s}^2 [/katex].
(b) Time for the CD player to reach full speed is [katex] \approx 1.83 \, \text{s} [/katex].
(c) Time to accelerate for the rotating object is [katex] \approx 5.82 \, \text{s} [/katex].
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?