0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 (a) | [katex] v = r \omega [/katex] | For rolling motion, the linear velocity [katex] v [/katex] at the bottom is related to the angular velocity [katex] \omega [/katex] by the radius [katex] r [/katex]. Here, the radius [katex] r [/katex] is 0.16 m. |
2 (a) | [katex] \omega = \frac{v}{r} [/katex] | Calculate the angular velocity [katex] \omega [/katex] at the bottom using the given linear velocity [katex] v = 3.2 \, \text{m/s} [/katex]. |
3 (a) | [katex] \omega = \frac{3.2 \, \text{m/s}}{0.16 \, \text{m}} = 20 \, \text{rad/s} [/katex] | Substitute the values into the equation to find [katex] \omega [/katex]. |
4 (a) | [katex] \alpha = \frac{\omega}{t} [/katex] | Angular acceleration [katex] \alpha [/katex] is calculated using the angular velocity [katex] \omega [/katex] and the time [katex] t [/katex] it takes to reach that angular velocity. |
5 (a) | [katex] v^2 = v_0^2 + 2aL [/katex] | Using the kinematic equation for linear motion, where [katex] a [/katex] is linear acceleration and [katex] L = 1.5 \, \text{m} [/katex] is the length of the incline. |
6 (a) | [katex] 3.2^2 = 0 + 2a \times 1.5 [/katex] | [katex] a = \frac{(3.2)^2}{2 \times 1.5} = \frac{10.24}{3} \approx 3.413 \, \text{m/s}^2 [/katex] |
7 (a) | [katex] a = r\alpha [/katex] | Relate linear acceleration [katex] a [/katex] to angular acceleration [katex] \alpha [/katex]. |
8 (a) | [katex] \alpha = \frac{a}{r} = \frac{3.413 \, \text{m/s}^2}{0.16 \, \text{m}} \approx 21.33 \, \text{rad/s}^2 [/katex] | Compute angular acceleration [katex] \alpha [/katex]. |
1 (b) | [katex] \omega = \alpha t [/katex] | Use the equation for angular velocity [katex] \omega [/katex] related to angular acceleration [katex] \alpha [/katex] and time [katex] t [/katex]. |
2 (b) | [katex] \omega_{\text{rpm}} = 7329 = \omega \frac{60}{2\pi} [/katex] | Convert [katex] \omega [/katex] from rpm to rad/s for calculation. |
3 (b) | [katex] \omega = 7329 \cdot \frac{2\pi}{60} \approx 767.23 \, \text{rad/s} [/katex] | Find [katex] \omega [/katex] in rad/s. |
4 (b) | [katex] t = \frac{\omega}{\alpha} = \frac{767.23}{419} \approx 1.83 \, \text{s} [/katex] | Compute the time [katex] t [/katex]. |
1 (c) | [katex] \Delta \omega = \alpha \Delta t [/katex] | Angular velocity change [katex] \Delta \omega [/katex] is given, calculate the time [katex] \Delta t [/katex] using angular acceleration [katex] \alpha [/katex]. |
2 (c) | [katex] \Delta \omega = 33.3 \, \text{rad/s} – 3.33 \, \text{rad/s} = 29.97 \, \text{rad/s} [/katex] | Calculate the change in angular velocity [katex] \Delta \omega [/katex]. |
3 (c) | [katex] \Delta t = \frac{\Delta \omega}{\alpha} = \frac{29.97}{5.15} \approx 5.82 \, \text{s} [/katex] | Calculate the time [katex] \Delta t [/katex] needed to reach the final angular velocity. |
Just ask: "Help me solve this problem."
A string is wound tightly around a fixed pulley having a radius of 5.0 cm. As the string is pulled, the pulley rotates without any slipping of the string. What is the angular speed of the pulley when the string is moving at 5.0 m/s?
A uniform solid cylinder of mass [katex] M [/katex] and radius [katex] R [/katex] is initially at rest on a frictionless horizontal surface. A massless string is attached to the cylinder and is wrapped around it. The string is then pulled with a constant force [katex] F [/katex] , causing the cylinder to rotate about its center of mass. After the cylinder has rotated through an angle [katex] \theta [/katex], what is the kinetic energy of the cylinder in terms of [katex] F [/katex] and [katex] \theta [/katex]?
Young David experimented with slings before tackling Goliath. He found that he could develop an angular speed of \( 8.0 \) \( \text{rev/s} \) in a sling \( 0.60 \) \( \text{m} \) long. If he increased the length to \( 0.90 \) \( \text{m} \), he could revolve the sling only \( 6.0 \) times per second.
A system consists of two small disks, of masses \( m \) and \( 2m \), attached to ends of a rod of negligible mass of length \( 3x \). The rod is free to turn about a vertical axis through point \( P \). The first mass, \( m \), is located \( x \) away from point \( P \), and therefore the other mass, of \( 2m \), is \( 2x \) from point \( P \). The two disks rest on a rough horizontal surface; the coefficient of friction between the disks and the surface is \( \mu \). At time \( t = 0 \), the rod has an initial counterclockwise angular velocity \( \omega_i \) about \( P \). The system is gradually brought to rest by friction.
Derive expressions for the following quantities in terms of \( \mu \), \( m \), \( x \), \( g \), and \( \omega_i \).
The driver of a car traveling at \( 30.0 \) \( \text{m/s} \) applies the brakes and undergoes a constant negative acceleration of \( 2.00 \) \( \text{m/s}^2 \). How many revolutions does each tire make before the car comes to a stop, assuming that the car does not skid and that the tires have radii of \( 0.300 \) \( \text{m} \)?
(a) Angular acceleration of the ball is [katex] \approx 21.33 \, \text{rad/s}^2 [/katex].
(b) Time for the CD player to reach full speed is [katex] \approx 1.83 \, \text{s} [/katex].
(c) Time to accelerate for the rotating object is [katex] \approx 5.82 \, \text{s} [/katex].
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.