0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 (a) | [katex] v = r \omega [/katex] | For rolling motion, the linear velocity [katex] v [/katex] at the bottom is related to the angular velocity [katex] \omega [/katex] by the radius [katex] r [/katex]. Here, the radius [katex] r [/katex] is 0.16 m. |
| 2 (a) | [katex] \omega = \frac{v}{r} [/katex] | Calculate the angular velocity [katex] \omega [/katex] at the bottom using the given linear velocity [katex] v = 3.2 \, \text{m/s} [/katex]. |
| 3 (a) | [katex] \omega = \frac{3.2 \, \text{m/s}}{0.16 \, \text{m}} = 20 \, \text{rad/s} [/katex] | Substitute the values into the equation to find [katex] \omega [/katex]. |
| 4 (a) | [katex] \alpha = \frac{\omega}{t} [/katex] | Angular acceleration [katex] \alpha [/katex] is calculated using the angular velocity [katex] \omega [/katex] and the time [katex] t [/katex] it takes to reach that angular velocity. |
| 5 (a) | [katex] v^2 = v_0^2 + 2aL [/katex] | Using the kinematic equation for linear motion, where [katex] a [/katex] is linear acceleration and [katex] L = 1.5 \, \text{m} [/katex] is the length of the incline. |
| 6 (a) | [katex] 3.2^2 = 0 + 2a \times 1.5 [/katex] | [katex] a = \frac{(3.2)^2}{2 \times 1.5} = \frac{10.24}{3} \approx 3.413 \, \text{m/s}^2 [/katex] |
| 7 (a) | [katex] a = r\alpha [/katex] | Relate linear acceleration [katex] a [/katex] to angular acceleration [katex] \alpha [/katex]. |
| 8 (a) | [katex] \alpha = \frac{a}{r} = \frac{3.413 \, \text{m/s}^2}{0.16 \, \text{m}} \approx 21.33 \, \text{rad/s}^2 [/katex] | Compute angular acceleration [katex] \alpha [/katex]. |
| 1 (b) | [katex] \omega = \alpha t [/katex] | Use the equation for angular velocity [katex] \omega [/katex] related to angular acceleration [katex] \alpha [/katex] and time [katex] t [/katex]. |
| 2 (b) | [katex] \omega_{\text{rpm}} = 7329 = \omega \frac{60}{2\pi} [/katex] | Convert [katex] \omega [/katex] from rpm to rad/s for calculation. |
| 3 (b) | [katex] \omega = 7329 \cdot \frac{2\pi}{60} \approx 767.23 \, \text{rad/s} [/katex] | Find [katex] \omega [/katex] in rad/s. |
| 4 (b) | [katex] t = \frac{\omega}{\alpha} = \frac{767.23}{419} \approx 1.83 \, \text{s} [/katex] | Compute the time [katex] t [/katex]. |
| 1 (c) | [katex] \Delta \omega = \alpha \Delta t [/katex] | Angular velocity change [katex] \Delta \omega [/katex] is given, calculate the time [katex] \Delta t [/katex] using angular acceleration [katex] \alpha [/katex]. |
| 2 (c) | [katex] \Delta \omega = 33.3 \, \text{rad/s} – 3.33 \, \text{rad/s} = 29.97 \, \text{rad/s} [/katex] | Calculate the change in angular velocity [katex] \Delta \omega [/katex]. |
| 3 (c) | [katex] \Delta t = \frac{\Delta \omega}{\alpha} = \frac{29.97}{5.15} \approx 5.82 \, \text{s} [/katex] | Calculate the time [katex] \Delta t [/katex] needed to reach the final angular velocity. |
Just ask: "Help me solve this problem."
Two masses, \( m_y = 32 \) \( \text{kg} \) and \( m_z = 38 \) \( \text{kg} \), are connected by a rope that hangs over a pulley. The pulley is a uniform cylinder of radius \( R = 0.311 \) \( \text{m} \) and mass \( 3.1 \) \( \text{kg} \). Initially, \( m_y \) is on the ground and \( m_z \) rests \( 2.5 \) \( \text{m} \) above the ground.
The angular velocity of a rotating disk of radius \(20 \, \text{cm}\) increases from \(1 \, \text{rad/s}\) to \(3 \, \text{rad/s}\) in \(0.5 \, \text{s}\). What is the linear tangential acceleration of a point on the rim of the disk during this time interval?
A centrifuge in a medical laboratory is rotating at an angular speed of \( 3600 \) \( \text{rev/min} \). When switched off, it rotates \( 50.0 \) times before coming to rest. Find the constant angular deceleration of the centrifuge.
At time \( t = 0 \), a disk starts from rest and begins spinning about its center with a constant angular acceleration of magnitude \( \alpha \). At time \( t_f \), the disk has angular speed \( \omega_f \). Which of the following expressions correctly compares the final angular displacement \( \theta_f \) of the disk at time \( t_f \) to the angular displacement \( \theta_{1/2} \) at time \( \frac{t_f}{2} \)?
A high-speed flywheel in a motor is spinning at \( 500 \) \( \text{rpm} \) when a power failure suddenly occurs. The flywheel has a mass of \( 40 \) \( \text{kg} \) and a diameter of \( 75 \) \( \text{cm} \). The power is off for \( 30 \) \( \text{s} \) and during this time the flywheel slows due to friction in its axle bearings. During this time the flywheel makes \( 200 \) complete revolutions.
(a) Angular acceleration of the ball is [katex] \approx 21.33 \, \text{rad/s}^2 [/katex].
(b) Time for the CD player to reach full speed is [katex] \approx 1.83 \, \text{s} [/katex].
(c) Time to accelerate for the rotating object is [katex] \approx 5.82 \, \text{s} [/katex].
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?