0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\tau = FR[/katex] | The torque ([katex]\tau[/katex]) exerted on the cylinder is due to the force [katex]F[/katex] applied at a radius [katex]R[/katex]. The formula for torque is the force times the perpendicular distance (radius in this case) from the axis of rotation. |
2 | [katex]\tau = I\alpha[/katex] | Newton’s second law for rotation states that the torque is equal to the moment of inertia ([katex]I[/katex]) times the angular acceleration ([katex]\alpha[/katex]). |
3 | [katex]I = \frac{1}{2}MR^2[/katex] | The moment of inertia for a solid cylinder about its axis is given by this formula, where [katex]M[/katex] is the mass and [katex]R[/katex] is the radius of the cylinder. |
4 | [katex]FR = \frac{1}{2}MR^2 \alpha[/katex] | Substitute the moment of inertia of the cylinder into the torque equation. |
5 | [katex]\alpha = \frac{2F}{MR}[/katex] | Solve for the angular acceleration ([katex]\alpha[/katex]) by isolating [katex]\alpha[/katex] on one side of the equation. |
6 | [katex]\omega^2 = \omega_0^2 + 2\alpha \theta[/katex] | Use the kinematic equation for rotational motion to relate the angular displacement ([katex]\theta[/katex]) to the final angular velocity ([katex]\omega[/katex]). Here, [katex]\omega_0[/katex] (initial angular velocity) is zero as the cylinder starts from rest. |
7 | [katex]\omega^2 = 2\alpha \theta[/katex] | Substitute [katex]\omega_0 = 0[/katex] into the equation because the cylinder starts from rest. |
8 | [katex]\omega = \sqrt{2\alpha \theta} = \sqrt{\frac{4F\theta}{MR}}[/katex] | Substitute the value of [katex]\alpha[/katex] from Step 5 into the equation to find [katex]\omega[/katex]. |
9 | [katex]K = \frac{1}{2}I\omega^2[/katex] | The total kinetic energy ([katex]K[/katex]) of the rotating cylinder is given by the formula for rotational kinetic energy, where [katex]I[/katex] is the moment of inertia and [katex]\omega[/katex] is the angular velocity. |
10 | [katex]K = \frac{1}{2} \times \frac{1}{2}MR^2 \times \left(\frac{4F\theta}{MR}\right)[/katex] | Substitute the expressions for [katex]I[/katex] and [katex]\omega[/katex] into the kinetic energy formula. |
11 | [katex]K = \frac{F\theta R}{2}[/katex] | Simplify the equation to get the final expression for the kinetic energy. |
12 | [katex]K = \frac{F\theta R}{2}[/katex] | Conclude with the neat, simplified expression for the kinetic energy of the cylinder after it has rotated through an angle [katex]\theta[/katex]. |
Just ask: "Help me solve this problem."
In 3.0 minutes, a ski lift raises 10 skiers at constant speed to a height of 85 m. The ski lift is 55° above the horizontal and the average mass of each skier is 67.5 kg. What is the average power provided by the tension in the cable pulling the lift?
A person holds a book at rest a few feet above a table. The person then lowers the book at a slow constant speed and places it on the table. Which of the following accurately describes the change in the total mechanical energy of the Earth–book system?
A platform is initially rotating on smooth ice with negligible friction, as shown above. A stationary disk is dropped directly onto the center of the platform. A short time later, the disk and platform rotate together at the same angular velocity, as shown at right in the figure. How does the angular momentum of only the platform change, if at all, after the disk drops? And what is the best justification.
When a fan is turned off, its angular speed decreases from \( 10 \) \( \text{rad/s} \) to \( 6.3 \) \( \text{rad/s} \) in \( 5.0 \) \( \text{s} \). What is the magnitude of the average angular acceleration of the fan?
Two equal-magnitude forces are applied to a door at the doorknob. The first force is applied perpendicular to the door, and the second force is applied at \( 30^\circ \) to the plane of the door. Which force exerts the greater torque about the door hinge?
[katex]K = \frac{F\theta R}{2}[/katex]
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.