0 attempts

0% avg

UBQ Credits

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | [katex] m = 110 \, \text{kg} [/katex] | Total mass of the person and bicycle is the sum of their individual masses. |

2 | [katex] d = 7 \, \text{m} [/katex] | Distance rolled down the hill before stopping. |

3 | [katex] \theta = 25^\circ [/katex] | Angle of inclination of the hill. |

4 | [katex] g = 9.8 \, \text{m/s}^2 [/katex] | Acceleration due to gravity. |

5 | [katex] \mu_k = 0.65 [/katex] | Coefficient of kinetic friction. |

6 | [katex] \Delta PE = mgh = mgd \sin(\theta) [/katex] | Calculate potential energy lost over the 7 m descent using the height change formula [katex] h = d \sin(\theta) [/katex]. |

7 | [katex] h = 7 \sin(25^\circ) [/katex] | Calculate the vertical distance descended. |

8 | [katex] \Delta PE = 110 \times 9.8 \times 7 \sin(25^\circ) [/katex] | Substitute known values into the potential energy formula. |

9 | [katex] \Delta PE \approx 2793.24 \, \text{J} [/katex] | Amount of energy needed to be transformed into friction, to bring the bike to a complete stop. |

9.5 | Calculate the maximum possible energy that friction can generate. | Use the [katex] W = Fd [/katex] as shown below |

10 | [katex] f_k = \mu_k (mg \cos(\theta)) [/katex] | Calculate the force of kinetic friction acting on the bicycle and rider while moving down the slope. |

11 | [katex] f_k = 0.65 \times (110 \times 9.8 \times \cos(25^\circ)) [/katex] | Substitute into the force of friction formula. |

12 | [katex] f_k \approx 627.89 \, \text{N} [/katex] | Calculating the force using approximate value of cosine function. |

13 | [katex] W = f_k \times d [/katex] | Work done by friction is the product of the force of friction and the distance over which it acts. |

14 | [katex] W = 627.89 \times 7 [/katex] | Substitute the values into the work formula. |

15 | [katex] W \approx 4395.23 \, \text{J} [/katex] | Calculating the total work done by friction. |

16 | Conclusion | The work done by friction exceeds the energy needed to bring the bike to a complete halt. Only 2793.24 J of frictional energy is transformed from potential energy to bring to bike to rest. |

Phy can also check your working. Just snap a picture!

- Statistics

Advanced

Conceptual

MCQ

A kickball is rolled by the pitcher at a speed of 10 m/s and it is kicked by another student. The kickball deforms a little during the kick, and then rebounds with a velocity of 15 m/s as its shape restores to a perfect sphere. Select all that must be true about the kickball and the kicking foot system.

- Energy, Momentum

Intermediate

Mathematical

MCQ

An object at rest suddenly explodes into two fragments (m_{1} and m_{2}) by an explosion. Fragment m_{1} acquires 3 times the kinetic energy of the other. What is the ratio of m_{1} to m_{2}?

- Energy, Momentum

Intermediate

Conceptual

MCQ

You kick a ball straight up. Compare the sign of the work done by gravity on the ball while it goes up with the sign of the work done by gravity while it goes down.

- Energy

Advanced

Conceptual

MCQ

How does the time *t _{1}* of a block

- Energy

Intermediate

Conceptual

MCQ

An object is projected vertically upward from ground level. It rises to a maximum height [katex] H [/katex]. If air resistance is negligible, which of the following must be true for the object when it is at a height [katex] H/2 [/katex] ?

- 1D Kinematics, Energy

2793.24 Joules

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex] | [katex]F = ma[/katex] |

[katex]v = v_i + at[/katex] | [katex]F_g = \frac{G m_1m_2}{r^2}[/katex] |

[katex]a = \frac{\Delta v}{\Delta t}[/katex] | [katex]f = \mu N[/katex] |

[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex] |

Circular Motion | Energy |
---|---|

[katex]F_c = \frac{mv^2}{r}[/katex] | [katex]KE = \frac{1}{2} mv^2[/katex] |

[katex]a_c = \frac{v^2}{r}[/katex] | [katex]PE = mgh[/katex] |

[katex]KE_i + PE_i = KE_f + PE_f[/katex] |

Momentum | Torque and Rotations |
---|---|

[katex]p = m v[/katex] | [katex]\tau = r \cdot F \cdot \sin(\theta)[/katex] |

[katex]J = \Delta p[/katex] | [katex]I = \sum mr^2[/katex] |

[katex]p_i = p_f[/katex] | [katex]L = I \cdot \omega[/katex] |

Simple Harmonic Motion |
---|

[katex]F = -k x[/katex] |

[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex] |

[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex] |

Constant | Description |
---|---|

[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |

[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |

[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |

[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |

[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |

[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |

[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |

Variable | SI Unit |
---|---|

[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |

[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |

[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |

[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |

[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |

Variable | Derived SI Unit |
---|---|

[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |

[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |

[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |

[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |

[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |

[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |

[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |

[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`[katex]\text{5 km}[/katex]`

Use the conversion factors for kilometers to meters and meters to millimeters:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]`

Perform the multiplication:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]`

Simplify to get the final answer:

`[katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |

Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |

Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |

Milli- | m | [katex]10^{-3}[/katex] | 0.001 |

Centi- | c | [katex]10^{-2}[/katex] | 0.01 |

Deci- | d | [katex]10^{-1}[/katex] | 0.1 |

(Base unit) | – | [katex]10^{0}[/katex] | 1 |

Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |

Hecto- | h | [katex]10^{2}[/katex] | 100 |

Kilo- | k | [katex]10^{3}[/katex] | 1,000 |

Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |

Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |

Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |

- Some answers may be slightly off by 1% depending on rounding, etc.
- Answers will use different values of gravity. Some answers use 9.81 m/s
^{2}, and other 10 m/s^{2 }for calculations. - Variables are sometimes written differently from class to class. For example, sometime initial velocity [katex] v_i [/katex] is written as [katex] u [/katex]; sometimes [katex] \Delta x [/katex] is written as [katex] s [/katex].
- Bookmark questions that you can’t solve so you can come back to them later.
- Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages and Images
- Unlimited UBQ Credits
- 157% Better than GPT
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- All Smart Actions
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

UBQ credits are specifically used to grade your FRQs and GQs.

You can still view questions and see answers without credits.

Submitting an answer counts as 1 attempt.

Seeing answer or explanation counts as a failed attempt.

Lastly, check your average score, across every attempt, in the top left.

MCQs are 1 point each. GQs are 1 point. FRQs will state points for each part.

Phy can give partial credit for GQs & FRQs.

Phy sees everything.

It customizes responses, explanations, and feedback based on what you struggle with. Try your best on every question!

Understand you mistakes quicker.

For GQs and FRQs, Phy provides brief feedback as to how you can improve your answer.

Aim to increase your understadning and average score with every attempt!

10 Free Credits To Get You Started

*Phy Pro members get unlimited credits