0 attempts

0% avg

UBQ Credits

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | [katex]v^2 = v_0^2 + 2gh[/katex] | This is the formula for the final speed [katex] v [/katex] of the stone in terms of the initial speed [katex] v_0 [/katex], acceleration due to gravity [katex] g [/katex], and the height [katex] h [/katex] from which the stone is released, based on the equations of motion under constant acceleration. |

2 | [katex]v = \sqrt{v_0^2 + 2gh}[/katex] | From the formula for the final speed squared, solve for [katex] v [/katex] by taking the square root on both sides. |

3 | Analysis for Case A: [katex]v_A = \sqrt{(v_0)^2 + 2gh}[/katex] | In Case A, the stone is thrown straight up. As it falls back down, it passes the release point with speed [katex] v_0 [/katex] (directed downwards), then continues to accelerate due to gravity. |

4 | Analysis for Case B: [katex]v_B = \sqrt{(v_0)^2 + 2gh}[/katex] | In Case B, the stone is thrown straight down, adding to the initial kinetic energy as it continues to accelerate due to gravity. |

5 | Analysis for Case C: [katex]v_C = \sqrt{(v_0)^2 + 2gh}[/katex] | In Case C, the stone is thrown at an angle. The vertical component of the initial velocity contributes to reaching a maximum height, then it falls back gaining speed, reaching the same speed at height [katex] h [/katex] due to symmetry of projectile motion under gravity. |

6 | Analysis for Case D: [katex]v_D = \sqrt{(v_0)^2 + 2gh}[/katex] | In Case D, the stone is thrown horizontally. It means it has no initial vertical velocity component, but it gains vertical velocity solely due to gravity as it falls. |

7 | Comparison of [katex] v_A, v_B, v_C, [/katex] and [katex] v_D [/katex] | All expressions for the final velocities in different cases turn out to be identical when hitting the water, since in each case, the vertical motion is independent of the horizontal motion, and each starts at the same initial vertical speed relative to the bridge (point considered zero velocity vertically for cases C and D). |

8 | The speed will be greatest | Since [katex] v_A = v_B = v_C = v_D [/katex], the speed of the stone when it hits the water will be the same in all cases, option (e). |

This analysis clearly shows that regardless of the direction in which the stone is thrown (if air resistance is ignored), given the same release conditions in terms of speed, the final speed just before impact will be the same.

Just ask: "Help me solve this problem."

- Statistics

Advanced

Mathematical

GQ

A spring launches a 4 kg block across a frictionless horizontal surface. The block then ascends a 30° incline with a kinetic friction coefficient of 0.25, stopping after 55 m on the incline. If the spring constant is 800 N/m, find the initial compression of the spring. Disregard friction while in contact with the spring.

- Energy, Friction, Springs

Intermediate

Conceptual

MCQ

How does the speed *v _{1}* of a block

- Energy

Advanced

Mathematical

FRQ

A 90 kg individual is cycling up a hill inclined at 30 degrees on a 12 kg bicycle. The hill is quite steep, and the coefficient of static friction is 0.85. The cyclist ascends 12 meters up the hill and then pauses at the summit. If they then start descending from the peak at rest and travel 9 meters before firmly applying the brakes, causing the wheels to lock.

- Energy

Intermediate

Mathematical

GQ

A big bird has a mass of about 0.021 kg. Suppose it does 0.36 J of work against gravity, so that it ascends straight up with a net acceleration of 0.625 m/s^{2}. How far up does it move?

- Energy

Advanced

Conceptual

MCQ

A lighter car and a heavier truck, each traveling to the right with the same speed [katex] v [/katex] hit their brakes. The retarding frictional force F on both cars turns out to be constant and the same. After both vehicles travel a distance [katex] D [/katex] (and both are still moving), which of the following statements is true?

- Energy

Kinematics | Forces |
---|---|

\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |

\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |

\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |

\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |

\(v^2 = v_f^2 \,-\, 2a \Delta x\) |

Circular Motion | Energy |
---|---|

\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |

\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |

\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |

\(W = Fd \cos\theta\) |

Momentum | Torque and Rotations |
---|---|

\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |

\(J = \Delta p\) | \(I = \sum mr^2\) |

\(p_i = p_f\) | \(L = I \cdot \omega\) |

Simple Harmonic Motion | Fluids |
---|---|

\(F = -kx\) | \(P = \frac{F}{A}\) |

\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |

\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |

\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |

\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |

Constant | Description |
---|---|

[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |

[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |

[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |

[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |

[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |

[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |

[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |

Variable | SI Unit |
---|---|

[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |

[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |

[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |

[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |

[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |

Variable | Derived SI Unit |
---|---|

[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |

[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |

[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |

[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |

[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |

[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |

[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |

[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`[katex]\text{5 km}[/katex]`

Use the conversion factors for kilometers to meters and meters to millimeters:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]`

Perform the multiplication:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]`

Simplify to get the final answer:

`[katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |

Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |

Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |

Milli- | m | [katex]10^{-3}[/katex] | 0.001 |

Centi- | c | [katex]10^{-2}[/katex] | 0.01 |

Deci- | d | [katex]10^{-1}[/katex] | 0.1 |

(Base unit) | – | [katex]10^{0}[/katex] | 1 |

Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |

Hecto- | h | [katex]10^{2}[/katex] | 100 |

Kilo- | k | [katex]10^{3}[/katex] | 1,000 |

Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |

Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |

Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |

- 1. Some answers may vary by 1% due to rounding.
- Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
- Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
- Bookmark questions you can’t solve to revisit them later
- 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages and Images
- Unlimited UBQ Credits
- 157% Better than GPT
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- All Smart Actions
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.

Submitting counts as 1 attempt.

Viewing answers or explanations count as a failed attempts.

Phy gives partial credit if needed

MCQs and GQs are are 1 point each. FRQs will state points for each part.

Understand you mistakes quicker.

Phy automatically provides feedback so you can improve your responses.

10 Free Credits To Get You Started