AP Physics

Unit 6 - Rotational Motion

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

# Part (a) – To determine the acceleration of the system

Step Derivation/Formula Reasoning
1 [katex]T_1 – T_2 = I \alpha [/katex] This equation represents the relationship between the tensions on either side of the pulley ([katex]T_1[/katex] and [katex]T_2[/katex]), the moment of inertia of the pulley ([katex]I[/katex]), and the angular acceleration ([katex]\alpha[/katex]).
2 [katex]I = \frac{1}{2} m_p r^2[/katex] The moment of inertia ([katex]I[/katex]) of a disk-shaped pulley, where [katex]m_p[/katex] is the mass of the pulley and [katex]r[/katex] is its radius.
3 [katex]\alpha = a/r[/katex] The angular acceleration ([katex]\alpha[/katex]) is related to the linear acceleration ([katex]a[/katex]) of the falling mass by the radius of the pulley ([katex]r[/katex]).
4 [katex]f_k = \mu_k T_s[/katex] The frictional force [katex]f_k[/katex] is calculated using the coefficient of kinetic friction ([katex]\mu_k[/katex]) and the tangential component of the tension [katex]T_s[/katex], which can be approximated as [katex]T_s = (T_1 + T_2)/2[/katex].
5 [katex]T_1 – T_2 – f_k r = I \alpha[/katex] Combine the effects of tension and frictional force (considering the friction opposes the motion thus negative), and include the effect of the pulley’s inertia.
6 [katex](m_2 g – T_2) – (T_1 – m_1 g) = (m_1 + m_2) a[/katex] The forces acting on the blocks ([katex]m_1 g – T_1[/katex] downwards on [katex]m_1[/katex] and [katex]m_2 g – T_2[/katex] downwards on [katex]m_2[/katex], assuming [katex]m_1[/katex] < [katex]m_2[/katex] so [katex]m_2[/katex] descends) produces the net force, which equals the total system mass times the system’s acceleration.
7 Solve for [katex]a[/katex] using the equations Combine all equations replacing [katex]\alpha[/katex] with [katex]a/r[/katex] and solve for [katex]a[/katex] to get the system’s acceleration, involving simplifications and algebraic manipulation.

# Part (b) – To determine the tension in the rope

Step Derivation/Formula Reasoning
1 [katex]m_1 g – T_1 = m_1 a[/katex] For mass [katex]m_1[/katex], the net force is the difference between the weight and the tension, which equals its mass times acceleration.
2 [katex]T_1 = m_1 g – m_1 a[/katex] Solving the above equation for [katex]T_1[/katex] gives the tension in the rope on the side of mass [katex]m_1[/katex].
3 [katex]T_1[/katex] calculation Plug the values of [katex]g[/katex], [katex]m_1[/katex], and [katex]a[/katex] obtained from part (a) to find [katex]T_1[/katex].

# Part (c) – To determine the magnitude and direction of the frictional force exerted on the pulley

Step Derivation/Formula Reasoning
1 [katex]f_k = \mu_k \frac{T_1 + T_2}{2}[/katex] Using the approximation that the mean tension provides the force of friction calculation against the direction of motion.
2 [katex]f_k[/katex] calculation Calculate the value by substituting [katex]\mu_k[/katex], [katex]T_1[/katex], and [katex]T_2[/katex] values (where [katex]T_2[/katex] can be similarly calculated like [katex]T_1[/katex]).
3 [katex]f_k[/katex] direction determination The frictional force opposes the direction of relative motion between the rope and the pulley, which will be clockwise due to the motion of [katex]m_2[/katex] falling downward.

This sequence of tables will help in understanding the steps involved thoroughly to solve the given problem numerically. Please note the precise solutions would require the use of actual numerical values derived or given directly in the problem (e.g., gravitational acceleration [katex] g = 9.8 \, \text{m/s}^2 [/katex]).

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.