AP Physics

Unit 6 - Rotational Motion

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

(a) Find the speed of a point on the rim of the flywheel

Step Derivation/Formula Reasoning
1 \( \omega = 100,000 \, \text{rpm} \) Given the angular velocity of the flywheel.
2 \( \omega = 100,000 \times \frac{2\pi \, \text{rad} }{1 \, \text{rev}} \times \frac{1 \, \text{min} }{60 \, \text{s} } \) Convert from revolutions per minute (rpm) to radians per second (rad/s).
3 \( \omega = \frac{100,000 \times 2\pi}{60} \, \text{rad/s} \) Combine the conversion factors.
4 \( \omega \approx 10472 \, \text{rad/s} \) Simplify the expression to get the angular velocity in rad/s.
5 \( r = \frac{20 \, \text{cm}}{2} = 10 \, \text{cm} = 0.1 \, \text{m} \) Calculate the radius of the flywheel and convert to meters.
6 \( v = \omega r \) Use the formula for linear speed on the rim of a rotating object: \( v = \omega r \).
7 \( v = 10472 \, \text{rad/s} \times 0.1 \, \text{m} \) Substitute the values for \( \omega \) and \( r \) into the formula.
8 \( v \approx 1047.2 \, \text{m/s} \) Calculate the linear speed: the speed of a point on the rim of the flywheel is \( \boxed{1047.2 \, \text{m/s}} \).

(b) Find the magnitude of the rotor’s angular acceleration

Step Derivation/Formula Reasoning
1 \( \omega_i = 10472 \, \text{rad/s} \) Initial angular velocity from part (a).
2 \( \omega_f = 0.6 \times 10472 \, \text{rad/s} \) Angular velocity decreases by 40%, so the final angular velocity is 60% of the initial value.
3 \( \omega_f = 0.6 \times 10472 \, \text{rad/s} = 6283.2 \, \text{rad/s} \) Calculate the final angular velocity.
4 \( \alpha = \frac{\Delta \omega}{\Delta t} \) The formula for angular acceleration where \( \Delta \omega = \omega_f – \omega_i \) and \( \Delta t \) is the time interval.
5 \( \alpha = \frac{6283.2 \, \text{rad/s} – 10472 \, \text{rad/s}}{30 \, \text{s}} \) Substitute the known values into the formula.
6 \( \alpha = \frac{-4188.8 \, \text{rad/s}}{30 \, \text{s}} \) Simplify the numerator.
7 \( \alpha \approx -139.6 \, \text{rad/s}^2 \) Calculate the angular acceleration, which is . The magnitude is \( \boxed{139.6 \, \text{rad/s}^2} \).

(c) Find the number of revolutions the rotor makes during these 30 s

Step Derivation/Formula Reasoning
1 \( \theta = \omega_i t + \frac{1}{2} \alpha t^2 \) Use the kinematic equation for angular displacement under constant angular acceleration.
2 \( \theta = 10472 \, \text{rad/s} \times 30 \, \text{s} + \frac{1}{2} \times (-139.6 \, \text{rad/s}^2) \times (30 \, \text{s})^2 \) Substitute the known values into the formula.
3 \( \theta = 10472 \times 30 + \frac{1}{2} \times (-139.6) \times 900 \) Simplify the expression.
4 \( \theta = 314160 – 62820 \) Calculate the individual terms.
5 \( \theta = 251340 \, \text{rad} \) Combine the results to get the total angular displacement in radians.
6 \( \text{Revolutions} = \frac{\theta}{2\pi} \) Convert angular displacement from radians to revolutions.
7 \( \text{Revolutions} = \frac{251340}{2\pi} \) Substitute the value of \( \theta \).
8 \( \text{Revolutions} \approx 40000 \) Calculate the total number of revolutions. The rotor makes approximately \( \boxed{40000 \, \text{revolutions}} \) during these 30 seconds.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \( v \approx 1047.2 \, \text{m/s} \)
  2. \( \alpha \approx -139.6 \, \text{rad/s}^2 \)
  3. \( \text{Revolutions} \approx 40000 \)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.