0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \omega = 100,000 \, \text{rpm} \) | Given the angular velocity of the flywheel. |
2 | \( \omega = 100,000 \times \frac{2\pi \, \text{rad} }{1 \, \text{rev}} \times \frac{1 \, \text{min} }{60 \, \text{s} } \) | Convert from revolutions per minute (rpm) to radians per second (rad/s). |
3 | \( \omega = \frac{100,000 \times 2\pi}{60} \, \text{rad/s} \) | Combine the conversion factors. |
4 | \( \omega \approx 10472 \, \text{rad/s} \) | Simplify the expression to get the angular velocity in rad/s. |
5 | \( r = \frac{20 \, \text{cm}}{2} = 10 \, \text{cm} = 0.1 \, \text{m} \) | Calculate the radius of the flywheel and convert to meters. |
6 | \( v = \omega r \) | Use the formula for linear speed on the rim of a rotating object: \( v = \omega r \). |
7 | \( v = 10472 \, \text{rad/s} \times 0.1 \, \text{m} \) | Substitute the values for \( \omega \) and \( r \) into the formula. |
8 | \( v \approx 1047.2 \, \text{m/s} \) | Calculate the linear speed: the speed of a point on the rim of the flywheel is \( \boxed{1047.2 \, \text{m/s}} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \omega_i = 10472 \, \text{rad/s} \) | Initial angular velocity from part (a). |
2 | \( \omega_f = 0.6 \times 10472 \, \text{rad/s} \) | Angular velocity decreases by 40%, so the final angular velocity is 60% of the initial value. |
3 | \( \omega_f = 0.6 \times 10472 \, \text{rad/s} = 6283.2 \, \text{rad/s} \) | Calculate the final angular velocity. |
4 | \( \alpha = \frac{\Delta \omega}{\Delta t} \) | The formula for angular acceleration where \( \Delta \omega = \omega_f – \omega_i \) and \( \Delta t \) is the time interval. |
5 | \( \alpha = \frac{6283.2 \, \text{rad/s} – 10472 \, \text{rad/s}}{30 \, \text{s}} \) | Substitute the known values into the formula. |
6 | \( \alpha = \frac{-4188.8 \, \text{rad/s}}{30 \, \text{s}} \) | Simplify the numerator. |
7 | \( \alpha \approx -139.6 \, \text{rad/s}^2 \) | Calculate the angular acceleration, which is . The magnitude is \( \boxed{139.6 \, \text{rad/s}^2} \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( \theta = \omega_i t + \frac{1}{2} \alpha t^2 \) | Use the kinematic equation for angular displacement under constant angular acceleration. |
2 | \( \theta = 10472 \, \text{rad/s} \times 30 \, \text{s} + \frac{1}{2} \times (-139.6 \, \text{rad/s}^2) \times (30 \, \text{s})^2 \) | Substitute the known values into the formula. |
3 | \( \theta = 10472 \times 30 + \frac{1}{2} \times (-139.6) \times 900 \) | Simplify the expression. |
4 | \( \theta = 314160 – 62820 \) | Calculate the individual terms. |
5 | \( \theta = 251340 \, \text{rad} \) | Combine the results to get the total angular displacement in radians. |
6 | \( \text{Revolutions} = \frac{\theta}{2\pi} \) | Convert angular displacement from radians to revolutions. |
7 | \( \text{Revolutions} = \frac{251340}{2\pi} \) | Substitute the value of \( \theta \). |
8 | \( \text{Revolutions} \approx 40000 \) | Calculate the total number of revolutions. The rotor makes approximately \( \boxed{40000 \, \text{revolutions}} \) during these 30 seconds. |
Just ask: "Help me solve this problem."
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it is true to say that
A disk increases from 2 complete revolutions in 2 seconds to 5 complete revolutions in 2 seconds. What is its average angular acceleration?
The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of \( 5.0 \) \( \text{rev/s} \) in \( 8.0 \) \( \text{s} \). At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub slows to rest in \( 12.0 \) \( \text{s} \). Through how many revolutions does the tub turn during the entire \( 20 \)-s interval? Assume constant angular acceleration while it is starting and stopping.
A pulley has an initial angular speed of \( 12.5 \) \( \text{rad/s} \) and a constant angular acceleration of \( 3.41 \) \( \text{rad/s}^2 \). Through what angle does the pulley turn in \( 5.26 \) \( \text{s} \)?
Wheels \( A \) and \( B \) are connected by a moving belt and are both free to rotate about their centers. The belt does not slip on the wheels. The radius of Wheel \( B \) is twice the radius of Wheel \( A \). Wheel \( A \) has constant angular speed \( \omega_A \) and Wheel \( B \) has constant angular speed \( \omega_B \). Which of the following correctly relates \( \omega_A \) and \( \omega_B \)?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.