0 attempts
0% avg
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] I = \frac{1}{3}ML^2 + M(L^2) [/katex] | The moment of inertia [katex]I[/katex] for the system consists of two parts: the inertia of the rod about the pivot, given by [katex]\frac{1}{3}ML^2[/katex] (since it’s pivoted at one end), and the inertia of the mass attached to the other end, calculated as [katex]M(L^2)[/katex]. |
| 2 | [katex] I = \frac{4}{3}ML^2 [/katex] | Summing up the two contributions to the moment of inertia gives [katex]\frac{1}{3}ML^2 + ML^2 = \frac{4}{3}ML^2[/katex]. |
| 3 | [katex] \tau = -MgL [/katex] | The torque [katex]\tau[/katex] generated by the mass at the end of the rod is calculated by the force due to gravity on the mass times the distance from the pivot. The negative sign indicates the torque acts to rotate the rod clockwise. |
| 4 | [katex] \alpha = \frac{\tau}{I} [/katex] | The angular acceleration [katex]\alpha[/katex] is found using Newton’s second law for rotation, which relates the torque on the system to its moment of inertia and angular acceleration. |
| 5 | [katex] \alpha = \frac{-MgL}{\frac{4}{3}ML^2} [/katex] | Plugging in the values for [katex]\tau[/katex] and [katex]I[/katex]. |
| 6 | [katex] \alpha = \frac{-3g}{4L} [/katex] | Upon simplifying, we find [katex]\alpha = \frac{-3g}{4L}[/katex]. The negative sign shows the direction of the acceleration but for the magnitude we use [katex]\alpha = \frac{3g}{4L}[/katex]. |
| 7 | [katex](b) \: \frac{3g}{4L}[/katex] | The correct option for the angular acceleration immediately after the rod is released is (b) [katex]\frac{3g}{4L}[/katex]. |
In terms of evaluating the choices:
(a) [katex] \frac{g}{L} [/katex] – Incorrect because it omits the contribution from the entire mass and length distribution.
(c) [katex] \frac{(m+1)g}{L} [/katex] – Not suitable, incorrect dimensions and does not respect system specifications.
(d) [katex] \frac{3mg}{2L} [/katex] – Incorrect as it miscalculates the distribution of mass.
(e) None of these – Not correct since one of the provided choices is indeed correct.
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
Angular momentum cannot be conserved if
A solid disk has a mass \( M \) and radius \( R \). What is the moment of inertia about an axis that is perpendicular to the plane of the disk and passes through its edge? Hint: the moment of inertia about the disk center is given as \(I_{center}=\frac{1}{2}M R^{2}\).
Consider a uniform hoop of radius \( R \) and mass \( M \) rolling without slipping. Which is larger, its translational kinetic energy or its rotational kinetic energy? Hint: The moment of inertia of a uniform hoop is \(I = M R^2\)
An object is moving in a horizontal circle at a constant speed. Which of the following correctly describes the linear and angular velocities of the object between any point along the circular path?

A light string is attached to a massive pulley of known rotational inertia \( I_P \), as shown in the figure. A student must determine the relationship between the torque exerted on the pulley and the change in the pulley’s angular velocity when the torque is applied for \( 2.0 \) \( \text{s} \). In addition to a stopwatch to measure the time interval, what two measurements could the student make in order to determine the relationship? Select two answers.
A horizontal uniform meter stick of mass 0.2 kg is supported at its midpoint by a pivot point. A mass of 0.1 kg is attached to the left end of the meter stick, and another mass of 0.15 kg is attached to the right end of the meter stick. The meter stick is free to rotate in the horizontal plane around the pivot point. What is the tension in the string supporting the left end of the meter stick?
If a constant net torque is applied to an object it will (select all that applies):
An airliner arrives at the terminal, and the engines are shut off. The rotor of one of the engines has an initial clockwise angular velocity of \( 2000 \) \( \text{rad/s} \). The engine’s rotation slows with an angular acceleration of magnitude \( 80.0 \) \( \text{rad/s}^2 \).
A uniform copper disk of radius \( R \) has a moment of inertia \( I \) around an axis passing through the center of the disk perpendicular to its plane. If the radius of the disk were only \( \dfrac{R}{2} \), but the thickness were the same, what would be the moment of inertia in terms of \( I \)? Hint: The moment of inertia of a solid disk about its center is \(\frac{1}{2} M R^{2}\).
Suppose just two external forces act on a stationary, rigid object and the two forces are equal in magnitude and opposite in direction. Under what condition does the object start to rotate?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?