0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[m v_i = (m+M) v_x\] | Linear momentum is conserved during the perfectly inelastic collision because no external horizontal forces act. The small block of mass \(m\) with speed \(v_i\) sticks to the block \(M\); both move together with speed \(v_x\). |
| 2 | \[v_x = \frac{m}{m+M}v_i\] | Algebraically solve for the common speed \(v_x\). |
| 3 | \[\boxed{v_x = \frac{m}{m+M}v}\] | Replace \(v_i\) by the given speed \(v\) of the incoming block. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\tfrac{1}{2}(m+M) v_x^2 = \tfrac{1}{2} k A^2\] | The kinetic energy of the joined masses right after impact transforms completely into spring potential energy at maximum compression (amplitude \(A\)). |
| 2 | \[A = v_x\sqrt{\frac{m+M}{k}}\] | Solve the energy equation for \(A\). |
| 3 | \[A = \frac{m v}{m+M}\sqrt{\frac{m+M}{k}}\] | Substitute the expression for \(v_x\) obtained in part (a). |
| 4 | \[\boxed{A = \frac{m v}{\sqrt{k\,(m+M)}}}\] | Simplify the radicals and fractions. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[T = 2\pi \sqrt{\frac{m+M}{k}}\] | The system now behaves as a simple mass–spring oscillator with effective mass \(m+M\) and spring constant \(k\). The standard formula for the period of such an oscillator is used. |
| 2 | \[\boxed{T = 2\pi \sqrt{\dfrac{m+M}{k}}}\] | Final expression for the period. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[E = \tfrac{1}{2}(m+M) v_x^2\] | Total mechanical energy after collision equals the kinetic energy just after impact; this energy stays constant and equals the maximum spring potential energy. |
| 2 | \[E = \tfrac{1}{2}(m+M)\left(\frac{m}{m+M}v\right)^2\] | Insert the value of \(v_x\) from part (a). |
| 3 | \[\boxed{E = \frac{m^2 v^2}{2\,(m+M)}}\] | Simplify the algebraic expression. |
Just ask: "Help me solve this problem."
A person holds a book at rest a few feet above a table. The person then lowers the book at a slow constant speed and places it on the table. Which of the following accurately describes the change in the total mechanical energy of the Earth–book system?

A simple pendulum oscillates with amplitude \(A\) and period \(T\), as represented on the graph above. Which option best represents the magnitude of the pendulum’s velocity \(v\) and acceleration \(a\) at time \(\frac{T}{2}\)?
A Christmas ornament made from a thin hollow glass sphere hangs from a thin wire of negligible mass. It is observed to oscillates with a frequency of \( 2.50 \) \( \text{Hz} \) in a city where \( g = 9.80 \) \( \text{m/s}^2 \). What is the radius of the ornament? The moment of inertia of the ornament is given by \( I = \frac{5}{3} mr^2 \).
A \(0.50 \, \text{kg}\) mass is attached to a spring constant \(20 \, \text{N/m}\) along a horizontal, frictionless surface. The object oscillates in simple harmonic motion and has a speed of \(1.5 \, \text{m/s}\) at the equilibrium position. What is the total energy of the system?
A spring is connected to a wall and a horizontal force of \( 80.0 \) \( \text{N} \) is applied. It stretches \( 25 \) \( \text{cm} \); what is its spring constant?
\(v_x = \frac{m}{m+M} v\)
\(A = \frac{m v}{\sqrt{k (m+M)}}\)
\(T = 2\pi \sqrt{\frac{m+M}{k}}\)
\(E = \frac{m^2 v^2}{2(m+M)}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?