0 attempts
0% avg
UBQ Credits
To solve the problem using principles of work and energy, we consider the system comprising the two masses. We know that one mass will move up while the other moves down, and we’re given the displacement [katex] d = 0.8 [/katex] meters for each mass.
Assuming the 12 kg mass moves downward and the 9 kg mass moves upward, we need to find the common velocity [katex] v [/katex] after they have moved 0.8 meters, taking into account that energy is conserved in this isolated system (ignoring air resistance and friction). Here’s the step-by-step analysis:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] m_1 = 12 \, \text{kg} [/katex] [katex] m_2 = 9 \, \text{kg} [/katex] |
Define the masses where [katex] m_1 [/katex] is the 12 kg mass and [katex] m_2 [/katex] is the 9 kg mass. |
2 | [katex] g = 9.81 \, \text{m/s}^2 [/katex] | Acceleration due to gravity is [katex] g [/katex]. |
3 | [katex] \Delta h = 0.8 \, \text{m} [/katex] | Both masses displace by 0.8 m, one moving up and the other down. |
4 | [katex] U_{\text{initial}} = 0 \, \text{J} [/katex] | Initial potential energy is set to zero for simplicity as we’re only interested in changes. |
5 | [katex] U_{\text{final}} = -m_1 g \Delta h + m_2 g \Delta h [/katex] | Final potential energy obtained by considering the gain in height by [katex] m_2 [/katex] and loss in height by [katex] m_1 [/katex]. |
6 | [katex] U_{\text{final}} = -12 \times 9.81 \times 0.8 + 9 \times 9.81 \times 0.8 [/katex] | Substitute the known values to find [katex] U_{\text{final}} [/katex]. |
7 | [katex] U_{\text{final}} = -23.544 \, \text{J} [/katex] | Calculate the final potential energy. |
8 | [katex] KE_{\text{initial}} = 0 \, \text{J} [/katex] | Initial kinetic energy, assuming they start from rest. |
9 | [katex] KE_{\text{final}} = \frac{1}{2} (m_1 + m_2) v^2 [/katex] | Kinetic energy for the system of the two moving masses at the final state. |
10 | [katex] KE_{\text{final}} = \frac{1}{2} (12+9) v^2 [/katex] | Expression for the final kinetic energy of both masses. |
11 | [katex] KE_{\text{final}} = 10.5 v^2 [/katex] | Simplifying the expression for final kinetic energy. |
12 | [katex] KE_{\text{final}} = -U_{\text{final}} [/katex] | By conservation of energy, change in potential energy equals change in kinetic energy. |
13 | [katex] 10.5 v^2 = 23.544 [/katex] | Substitute computed value of [katex] U_{\text{final}} [/katex]. |
14 | [katex] v^2 = \frac{23.544}{10.5} [/katex] | Solve for [katex] v^2 [/katex]. |
15 | [katex] v = \sqrt{\frac{23.544}{10.5}} [/katex] | Calculate [katex] v [/katex]. |
16 | [katex] v \approx 1.49 \, \text{m/s} [/katex] | Final velocity of the masses after traveling 0.8 m. |
This result indicates the common speed of both masses after they have moved 0.8 meters, based on the conservation of mechanical energy.
Just ask: "Help me solve this problem."
A person is making homemade ice cream. She exerts a force of magnitude 23 N on the free end of the crank handle on the ice-cream maker, and this end moves on a circular path of radius 0.25 m. The force is always applied parallel to the motion of the handle. If the handle is turned once every 1.7 s, what is the average power being expended?
A ski lift carries skiers along a 695 meter slope inclined at 34°. To lift a single rider, it is necessary to move 72 kg of mass to the top of the lift. Under maximum load conditions, five riders per minute arrive at the top. If 65 percent of the energy supplied by the motor goes to overcoming friction, what average power must the motor supply?
A child pushes horizontally on a box of mass m with constant speed v across a rough horizontal floor. The coefficient of friction between the box and the floor is µ. At what rate does the child do work on the box?
A block of mass 3.0 kg is hung from a spring, causing it to stretch 12 cm at equilibrium. The 3.0 kg block is then taken off and the spring returns to its original height. Now a 4.0 kg block is placed on the spring and released from rest. How far will the 4.0 kg block fall before its direction is reversed?
A 2 kg model rocket is launched with a thrust force of 275 N and reaches a height of 90 m, moving at 150 m/s at its peak. What is the average air resistance force acting on the rocket during its ascent?
1.49 m/s
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.