0 attempts
0% avg
UBQ Credits
Part (a): Drawing a Free Body Diagram (FBD)
For the purposes of this explanation, drawing of the FBD is described:
– The ladder rests against a wall with length [katex] L [/katex] and weight [katex] W = 50 \, \text{N} [/katex].
– [katex] F_N [/katex] represents the normal force exerted by the wall on the ladder, acting horizontally at the top of the ladder.
– [katex] F_f [/katex] is the frictional force at the base of the ladder, which opposes the sliding movement, acting horizontally towards the wall.
– [katex] N [/katex] stands for the normal force exerted by the ground on the ladder, vertically upwards.
– [katex] W [/katex] is the weight of the ladder acting downwards from its center of mass.
Part (b): Finding the Minimum Angle [katex]\theta_{\text{min}}[/katex] so the Ladder Does Not Slip
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] \text{Sum of horizontal forces: } F_N = F_f [/katex] | The normal force [katex] F_N [/katex] exerted by the wall is balanced by the frictional force [katex] F_f [/katex] at the base, since there is no other horizontal motion. |
2 | [katex] \text{Sum of vertical forces: } N = W [/katex] | The normal force [katex] N [/katex] from the ground balances the gravitational force [katex] W [/katex] because there is no vertical motion. |
3 | [katex] F_f = \mu N [/katex] | The frictional force [katex] F_f [/katex] can be expressed as the product of the coefficient of static friction [katex] \mu [/katex] and the normal force [katex] N [/katex]. |
4 | [katex] \text{Torque about point at base of ladder: } \\ W \frac{L}{2} \cos(\theta) = F_N L \sin(\theta) [/katex] | Taking torque about the base, counterclockwise torques due to the wall’s normal force [katex] F_N [/katex] should balance the clockwise torque due to the weight [katex] W [/katex]. The distance from the base to the CM is [katex] \frac{L}{2} [/katex]. |
5 | [katex] \frac{W}{2} = F_N \tan(\theta) [/katex] | Further simplification. |
6 | [katex] \frac{W}{2} = \mu W \tan(\theta) [/katex] | Replace [katex] F_N [/katex] with [katex] \mu N [/katex] as solved for in step 3, since [katex] F_N = F_f [/katex] as described in step 1. |
7 | [katex] \tan(\theta) = \frac{1}{2\mu} [/katex] | Simplify further by canceling out [katex] W [/katex] and isolating [katex]\theta [/katex]. |
8 | [katex] \theta = \tan^{-1}(\frac{1}{2\mu}) [/katex] | Finally, take the inverse tan to find [katex] \theta [/katex]. |
9 | [katex] \theta = \tan^{-1}(\frac{1}{2 \times .4}) [/katex] | Substitute [katex] \mu = 0.4 [/katex] into the equation derived. |
10 | [katex] \theta = \tan^{-1}(0.8) \approx 51.34^\circ [/katex] | This is the minimum angle to ensure the ladder does not slip. Calculate [katex] \theta [/katex] in degrees. |
11 | [katex] \boxed{\theta_{\text{min}} \approx 51.34^\circ} [/katex] | Final answer. |
Just ask: "Help me solve this problem."
A hungry bear weighing 700 N walks out on a beam in an attempt to retrieve a basket of goodies hanging at the end of the beam. The beam is uniform, weighs 200 N, and is 6.00 m long. The goodies weigh 80 N.
A construction worker spins a square sheet of metal of mass 0.040 kg with an angular acceleration of 10.0 rad/s2 on a vertical spindle (pin). What are the dimensions of the sheet if the net torque on the sheet is 1.00 N·m? Assume that the moment of inertia of a rectangle is [katex] I = \frac{1}{12}M(a^2+b^2) [/katex]
A pulley has an initial angular speed of 12.5 rad/s and a constant angular acceleration of 3.41 rad/s2. Through what angle does the pulley turn in 5.26 s?
In both cases, a massless rod is supported by fulcrum, and a 200-kg hanging mass is suspended from the left end of the rod by a cable. A downward force F keeps the rod in rest. The rod in Case A is 50 cm long, and the rod in case B is 40 cm long (each rod is marked at 10-cm intervals). The magnitude of each vertical force F exerted on the rod will be
Consider a solid uniform sphere of radius R and mass M rolling without slipping. Which form of its kinetic energy is larger, translational or rotational?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.