0 attempts
0% avg
UBQ Credits
To solve this problem, we need to calculate the mass of the sphere given the diameter, torque, number of revolutions, and time. We will use the rotational dynamics principles and formulas.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]I = \frac{2}{5} m r^2[/katex] | The moment of inertia (I) for a solid sphere about an axis through its center is [katex]\frac{2}{5} m r^2[/katex], where [katex]m[/katex] is the mass and [katex]r[/katex] is the radius of the sphere. |
2 | [katex]r = \frac{0.72 \, \text{m}}{2} = 0.36 \, \text{m}[/katex] | Convert the diameter of the sphere to radius. This helps in computing the moment of inertia and further calculations. |
3 | [katex] \tau = I \alpha[/katex] | Torque ([katex]\tau[/katex]) is related to the angular acceleration ([katex]\alpha[/katex]) by the formula, where [katex]I[/katex] is the moment of inertia. |
4 | [katex]\theta = \omega_f t – \frac{1}{2} \alpha t^2[/katex] | The angular displacement ([katex] \theta [/katex]) can be expressed in terms of final angular velocity ([katex] \omega_f [/katex]), angular acceleration ([katex] \alpha [/katex]), and time ([katex] t [/katex]). Here, starting from rest simplifies to [katex] \theta = \frac{1}{2} \alpha t^2 [/katex]. |
5 | [katex]\theta = 160 \times 2\pi \text{ rad} = 1005.31 \text{ rad}[/katex] | Convert the number of revolutions to radians (since [katex]1[/katex] revolution = [katex]2\pi[/katex] radians). |
6 | [katex]1005.31 \text{ rad} = \frac{1}{2} \alpha (15.0 \text{ s})^2[/katex] | Use the total revolutions in radians and solve for angular acceleration [katex]\alpha[/katex] using the time elapsed. |
7 | [katex]\alpha = \frac{2 \times 1005.31 \text{ rad}}{(15.0 \text{ s})^2} = 8.937 \text{ rad/s}^2[/katex] | Calculate the angular acceleration [katex]\alpha[/katex]. |
8 | [katex]\tau = I \alpha \implies 10.8 \text{ Nm} = \frac{2}{5} m (0.36 \text{ m})^2 \times 8.937 \text{ rad/s}^2[/katex] | Plug values of moment of inertia and angular acceleration into the torque equation to solve for mass [katex]m[/katex]. |
9 | [katex]m = \frac{10.8 \text{ Nm}}{\frac{2}{5} \times (0.36 \text{ m})^2 \times 8.937 \text{ rad/s}^2} \approx 23.3 \text{ kg}[/katex] | Final step: solve the equation for mass, providing the solution to the problem. |
Just ask: "Help me solve this problem."
Young David experimented with slings before tackling Goliath. He found that he could develop an angular speed of \( 8.0 \) \( \text{rev/s} \) in a sling \( 0.60 \) \( \text{m} \) long. If he increased the length to \( 0.90 \) \( \text{m} \), he could revolve the sling only \( 6.0 \) times per second.
A person’s center of mass is easily found by having the person lie on a reaction board. A horizontal, \( 2.3 \) \( \text{m} \)-long, \( 6.1 \) \( \text{kg} \) reaction board is supported only at the ends, with one end resting on a scale and the other on a pivot. A \( 64 \) \( \text{kg} \) woman lies on the reaction board with her feet over the pivot. The scale reads \( 27 \) \( \text{kg} \). What is the distance from the woman’s feet to her center of mass? Express your answer with the appropriate units.
A uniform ladder of length L and weight [katex] W = 50 N [/katex] rests against a smooth vertical wall. If the coefficient of static friction between the ladder and the ground is [katex] \mu = .4 [/katex].
In both cases, a massless rod is supported by fulcrum, and a 200-kg hanging mass is suspended from the left end of the rod by a cable. A downward force F keeps the rod in rest. The rod in Case A is 50 cm long, and the rod in case B is 40 cm long (each rod is marked at 10-cm intervals). The magnitude of each vertical force F exerted on the rod will be
A wheel of radius R and negligible mass is mounted on a horizontal frictionless axle so that the wheel is in a vertical plane. Three small objects having masses [katex]m[/katex], [katex]M[/katex], and [katex]2M[/katex], respectively, are mounted on the rim of the wheel, as shown above. If the system is in static equilibrium, what is the value of [katex]m[/katex] in terms of [katex]M[/katex] ?
23.3 kg
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.