0 attempts
0% avg
Part 1: Calculate the distance traveled at \(20 \, \text{m/s}\) for 5 minutes
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \( t_1 = 5 \, \text{minutes} = 300 \, \text{seconds} \) | Convert the time from minutes to seconds since the speed is given in meters per second. |
| 2 | \( v_1 = 20 \, \text{m/s} \) | The initial speed of the car is \(20 \, \text{m/s}\). |
| 3 | \( \Delta x_1 = v_1 \cdot t_1 \) | Use the formula for distance: \( \Delta x = v \cdot t \). |
| 4 | \( \Delta x_1 = 20 \, \text{m/s} \cdot 300 \, \text{s} = 6000 \, \text{m} \) | Calculate the distance traveled at the initial speed. |
Part 2: Calculate the distance traveled at \(40 \, \text{m/s}\) for an additional 2 km
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \( \Delta x_2 = 2 \, \text{km} = 2000 \, \text{m} \) | Convert the distance from kilometers to meters. |
| 2 | \( v_2 = 40 \, \text{m/s} \) | The speed of the car in the second part of the trip is \(40 \, \text{m/s}\). |
| 3 | \( t_2 = \frac{\Delta x_2}{v_2} \) | Use the formula for time: \( t = \frac{\Delta x}{v} \). |
| 4 | \( t_2 = \frac{2000 \, \text{m}}{40 \, \text{m/s}} = 50 \, \text{s} \) | Calculate the time taken to travel the additional distance. |
Part 3: Calculate the total distance and total time of travel
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \( \Delta x_{\text{total}} = \Delta x_1 + \Delta x_2 \) | The total distance is the sum of the distances traveled in each part of the trip found in part 1 and 2. |
| 2 | \( \Delta x_{\text{total}} = 6000 \, \text{m} + 2000 \, \text{m} = 8000 \, \text{m} \) | Calculate the total distance traveled. |
| 3 | \( t_{\text{total}} = t_1 + t_2 \) | The total time is the sum of the times taken in each part of the trip. |
| 4 | \( t_{\text{total}} = 300 \, \text{s} + 50 \, \text{s} = 350 \, \text{s} \) | Calculate the total time of travel. |
Answer:
| Total Distance | Total Time |
|---|---|
| \( \boxed{8000 \, \text{m}} \) | \( \boxed{350 \, \text{s}} \) |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
There are two cables that lift an elevator, each with a force of \(10{,}000 \, \text{N}\). The \(1{,}000 \, \text{kg}\) elevator is lifted from the first floor and accelerates over \(10 \, \text{m}\) until it reaches its top speed of \(6 \, \text{m/s}\). What is the mass of the people in the elevator?
A rock is thrown vertically upward with a velocity of \( 20 \, \text{m/s} \) from the edge of a bridge \( 42 \, \text{m} \) above a river.
Two students are on a balcony 19.6 m above the street. One student throws a ball vertically downward at 14.7 m/s. At the same instant, the other student throws a ball vertically upward at the same speed. The second ball just misses the balcony on the way down.
An object of unknown mass is acted upon by multiple forces:
The coefficients of friction are \(\mu_s = 0.6\) and \(\mu_k = 0.2\). Starting from rest, the object travels \(10 \, \text{m}\) in \(4.5 \, \text{s}\). What is the mass of the unknown object?
Ball A is dropped from the top of a cliff. At the same time, Ball B is thrown straight upward from the ground at \( 30 \) \( \text{m/s} \). The two balls pass each other after \( 2.0 \) \( \text{s} \).
A rocket, initially at rest, is fired vertically upward with an acceleration of \( 12.0 \, \text{m/s}^2 \). At an altitude of \( 1.00 \, \text{km} \), the rocket engine cuts off. Drag is negligible.
A blue sphere and a red sphere with the same diameter are released from rest at the top of a ramp. The red sphere takes a longer time to reach the bottom of the ramp. The spheres are then rolled off a horizontal table at the same time with the same speed and fall freely to the floor. Which sphere reaches the floor first?
A red car, initially at rest, travels east with an acceleration of \( 3.5 \, \text{m/s}^2 \). At the same time as the red car starts to move, a blue car is traveling west at \( 15 \, \text{m/s} \) and accelerating at \( 1.2 \, \text{m/s}^2 \). If they are \( 600 \, \text{m} \) apart the moment the red car starts to move and they are traveling towards each other, where and when will they meet?

A cart begins to move from rest on a horizontal track. Which of the following correctly indicates the magnitude of the average velocity of the cart during the interval shown and provides a valid explanation?
Hint: when solving this, its consider that the area of the acceleration vs time graph tells you the change in velocity.
A driver is driving at \( 40 \, \text{m/s} \) when the light turns red in front of her. It takes the driver \( 0.9 \, \text{s} \) to react and hit the brakes. After this, the car slows with an acceleration of \( 3.5 \, \text{m/s}^2 \). What is the total distance traveled by the car?
Total distance traveled: \( 8,000 \, \text{m} \)
Total time of travel: \( 350 \, \text{s} \)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?