AP Physics

Unit 1 - Vectors and Kinematics

Advanced

Mathematical

GQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 **Set up coordinate system and initial conditions:**

– Let east be the positive \( x \)-direction.
– **Red car** starts at \( x_R(0) = 0 \) with \( v_{R0} = 0 \) and acceleration \( a_R = +3.5 \, \text{m/s}^2 \).
– **Blue car** starts at \( x_B(0) = 600 \, \text{m} \) with \( v_{B0} = -15 \, \text{m/s} \) (since it’s moving west) and acceleration \( a_B = -1.2 \, \text{m/s}^2 \).

Established reference frame and initial parameters for both cars.
2 **Write position equations for both cars:**

– **Red car position:**
\( x_R(t) = v_{R0} t + \tfrac{1}{2} a_R t^2 \)
\( x_R(t) = 0 + \tfrac{1}{2} (3.5) t^2 = 1.75 t^2 \)

– **Blue car position:**
\( x_B(t) = x_B(0) + v_{B0} t + \tfrac{1}{2} a_B t^2 \)
\( x_B(t) = 600 + (-15) t + \tfrac{1}{2} (-1.2) t^2 \)
\( x_B(t) = 600 – 15 t – 0.6 t^2 \)

Derived equations of motion for both cars using kinematics.
3 **Set positions equal to find meeting time \( t \):**

\( x_R(t) = x_B(t) \)
\( 1.75 t^2 = 600 – 15 t – 0.6 t^2 \)

Set the positions equal since the cars meet at the same point.
4 **Rearrange the equation to solve for \( t \):**

\( 1.75 t^2 + 0.6 t^2 + 15 t – 600 = 0 \)
\( 2.35 t^2 + 15 t – 600 = 0 \)

Combined like terms to form a quadratic equation.
5 **Use quadratic formula to solve for \( t \):**

Quadratic equation: \( a t^2 + b t + c = 0 \)
Coefficients: \( a = 2.35 \), \( b = 15 \), \( c = -600 \)

Discriminant:
\( D = b^2 – 4 a c = (15)^2 – 4 (2.35)(-600) = 225 + 5640 = 5865 \)

\( t = \dfrac{ -b \pm \sqrt{D} }{ 2 a } = \dfrac{ -15 \pm \sqrt{5865} }{ 4.7 } \)

Prepared to solve the quadratic equation for \( t \).
6 **Calculate the positive root for \( t \):**

\( \sqrt{5865} \approx 76.609 \)
\( t = \dfrac{ -15 + 76.609 }{ 4.7 } \approx \dfrac{61.609}{4.7} \approx 13.11 \, \text{s} \)

(Negative root yields negative time, which is not physical in this context.)

Found the time when the cars meet.
7 **Determine the meeting point \( x \):**

– Using red car’s position:
\( x_R = 1.75 t^2 = 1.75 \times (13.11)^2 \approx 1.75 \times 171.8521 \approx 300.74 \, \text{m} \)

– Using blue car’s position:
\( x_B = 600 – 15 t – 0.6 t^2 \)
\( x_B = 600 – 15 \times 13.11 – 0.6 \times (13.11)^2 \)
\( x_B \approx 600 – 196.65 – 103.11 \approx 300.24 \, \text{m} \)

– Slight difference due to rounding; positions agree within calculation accuracy.

Calculated the position where the cars meet.
8 **Verify velocities at meeting time (optional):**

– Red car’s velocity:
\( v_R = v_{R0} + a_R t = 0 + (3.5)(13.11) \approx 45.89 \, \text{m/s} \)

– Blue car’s velocity:
\( v_B = v_{B0} + a_B t = -15 + (-1.2)(13.11) \approx -30.73 \, \text{m/s} \)

Confirmed velocities for completeness (not required for answer).

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

Meeting Time: \( t \approx 13.11 \, \text{s} \)

Meeting Position: \( x \approx 300.7 \, \text{m} \) east of the red car’s start point

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.