0 attempts
0% avg
| Derivation / Formula | Reasoning |
|---|---|
| \[m_1 v_{i1} + m_2 v_{i2} = (m_1 + m_2) v_x\] | Conservation of linear momentum: the total momentum before (\(m_1 v_{i1}+m_2 v_{i2}\)) equals the total after (\((m_1+m_2)v_x\)) because external forces are negligible. |
| \[v_x = \frac{m_1 v_{i1}+ m_2 v_{i2}}{m_1 + m_2}\] | Solve the conservation equation algebraically for the unknown combined velocity \(v_x\). |
| \[v_x = \frac{(1200)(15.6) + (1500)(0)}{1200+1500}\] | Insert \(m_1 = 1200\, \text{kg}\), \(v_{i1}=15.6\, \text{m/s}\), \(m_2 = 1500\, \text{kg}\), and \(v_{i2}=0\, \text{m/s}\). |
| \[v_x = 6.9\ \text{m/s}\] | Compute numerator \(18\,720\) and divide by the total mass \(2700\, \text{kg}\). |
| \[\boxed{6.9\ \text{m/s}}\] | This matches choice (a); it is the speed of the locked cars immediately after impact. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
The two blocks of masses \( M \) and \( 2M \) travel at the same speed \( v \) but in opposite directions. They collide and stick together. How much mechanical energy is lost to other forms of energy during the collision?
Two blocks connected to a compressed spring move right at speed v. After releasing the spring, the left block moves left at speed [katex] v_2 [/katex], the right block moves right. What is the center speed of the blocks then?
A bullet of mass \(0.0500 \, \text{kg}\) traveling at \(50.0 \, \text{m/s}\) is fired horizontally into a wooden block suspended from a long rope. The mass of the wooden block is \(0.300 \, \text{kg}\) and it is initially at rest. The collision is completely inelastic and after impact the bullet + wooden block move together until the center of mass of the system rises a vertical distance \(h\) above its initial position.
A “doomsday” asteroid with a mass of \( 1010 \, \text{kg} \) is hurtling through space. Unless the asteroid’s speed is changed by about \( 0.20 \, \text{cm/s} \), it will collide with Earth and cause tremendous damage. Researchers suggest that a small “space tug” sent to the asteroid’s surface could exert a gentle constant force of \( 2.5 \, \text{N} \). For how long must this force act?
An astronaut initially at rest in space throws a wrench, and recoils in the opposite direction. Select all that is true.
| Experiment | Initial Velocity of Cart X \( (\text{m/s}) \) | Initial Velocity of Cart Y \( (\text{m/s}) \) | Final Velocity of Cart X \( (\text{m/s}) \) | Final Velocity of Cart Y \( (\text{m/s}) \) |
|---|---|---|---|---|
| \( 1 \) | \( 1 \) | \( 0 \) | \( 0 \) | \( 1 \) |
| \( 2 \) | \( 1 \) | \( -1 \) | \( -1 \) | \( 1 \) |
| \( 3 \) | \( 2 \) | \( 1 \) | \( 1 \) | \( 2 \) |
A student performs several experiments in which two carts collide as they travel along a horizontal surface. Cart X and Cart Y both have a mass of \( 1 \) \( \text{kg} \). Data collected from the three experiments are shown in the table above. During which experiment does the center of mass of the system of two carts have the greatest change in its momentum?
A bowling ball moving with speed \(v\) collides head-on with a stationary tennis ball. The collision is elastic and there is no friction. The bowling ball barely slows down. What is the speed of the tennis ball after the collision?

A super dart of mass \(20 \, \text{g}\), traveling at \(350 \, \text{m/s}\), strikes a steel plate at an angle of \(30^\circ\) with the plane of the plate, as shown in the figure. It bounces off the plate at the same angle but at a speed of \(320 \, \text{m/s}\). What is the magnitude of the impulse that the plate gives to the bullet?
Two boxes are tied together by a string and are sitting at rest on a frictionless surface. Between the two boxes is a massless compressed spring. The string trying the two boxes is then cut and the spring expands, pushing the boxes apart. The box on the left has four times the mass of the box on the right.
A bullet moving with an initial speed of \( v_o \) strikes and embeds itself in a block of wood which is suspended by a string, causing the bullet and block to rise to a maximum height \( h \). Which of the following statements is true of the collision.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?