0 attempts
0% avg
UBQ Credits
(a) Calculate the linear speed of the sphere when it reaches the bottom of the incline.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]h = L \sin(\theta)[/katex] | Calculate the vertical height [katex]h[/katex] fallen by the sphere using the length of the incline [katex]L[/katex] and the sine of the incline angle [katex]\theta[/katex]. |
2 | [katex]h = 7.0 \sin(35^\circ)[/katex] | Substitute [katex]L = 7.0 \, m[/katex] and [katex]\theta = 35^\circ[/katex]. |
3 | [katex]PE_{\text{top}} = KE_{\text{trans}} + KE_{\text{rot}}[/katex] | Use the conservation of mechanical energy, where potential energy at the top is equal to the sum of transnational kinetic energy and rotational kinetic energy at the bottom. |
4 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2[/katex] | Express the conservation of energy equation in terms of [katex]v[/katex] (linear velocity) and [katex]\omega[/katex] (angular velocity). |
5 | [katex]I = \frac{2}{5}MR^2[/katex] | Substitute the given moment of inertia for a solid sphere, where [katex]I = \frac{2}{5}MR^2[/katex]. |
6 | [katex]v = R\omega[/katex] | Relation between linear velocity and angular velocity for rolling without slipping. |
7 | [katex]\omega = \frac{v}{R}[/katex] | Rearrange the equation for [katex]\omega[/katex]. |
8 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{5}MR^2)(\frac{v}{R})^2[/katex] | Substitute [katex]I[/katex] and [katex]\omega[/katex] in terms of [katex]v[/katex] and [katex]R[/katex]. |
9 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{5}mv^2[/katex] | Simplify the equation by canceling [katex]M[/katex] and [katex]R[/katex]. |
10 | [katex]mgh = \frac{7}{10}mv^2[/katex] | Combine like terms. |
11 | [katex]v^2 = \frac{10}{7}gh[/katex] | Isolate [katex]v^2[/katex]. |
12 | [katex]v = \sqrt{\frac{10}{7}gh}[/katex] | Take the square root to find [katex]v[/katex]. |
13 | [katex]v = \sqrt{\frac{10}{7}(9.8)(7.0 \sin(35^\circ))}[/katex] | Substitute the values of [katex]g[/katex] and [katex]h[/katex]. |
14 | [katex]\boxed{v \approx 7.5 \, \text{m/s}}[/katex] | Final answer. |
(b) Determine the angular speed of the sphere at the bottom of the incline.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\omega = \frac{v}{R}[/katex] | Use the relation between linear and angular velocities for a rolling object. |
2 | [katex]\omega = \frac{7.5}{0.15}[/katex] | Substitute [katex]v = 7.5 \, \text{m/s}[/katex] and [katex]R = 0.15 \, m[/katex] (converted from cm). |
3 | [katex]\boxed{\omega \approx 50 \, \text{rad/s}}[/katex] | Final answer. |
(c) Does the linear speed depend on the radius or mass of the sphere?
Step | Analysis | Conclusion |
---|---|---|
1 | From the energy conservation equation, the mass [katex]m[/katex] cancelled out and the final expression for [katex]v[/katex] didn’t include the radius [katex]R[/katex]. | The linear speed does not depend on the mass or radius of the sphere as both factors were eliminated in deriving [katex]v[/katex]. |
(d) Does the angular speed depend on the radius or mass of the sphere?
Step | Analysis | Conclusion |
---|---|---|
1 | Angular speed [katex]\omega[/katex] was found from [katex]v[/katex] divided by [katex]R[/katex], but it did not involve mass [katex]m[/katex]. | Angular speed does depend on the radius and does not depend on the mass of the sphere. |
Just ask: "Help me solve this problem."
A mechanical wheel initially at rest on the floor begins rolling forward with an angular acceleration of \( 2\pi \, \text{rad/s}^2 \). If the wheel has a radius of \( 2 \, \text{m} \), what distance does the wheel travel in \( 3 \) seconds?
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it is true to say that
The elliptical orbit of a comet is shown above. Positions 1 and 2 are, respectively, the farthest and nearest positions to the Sun, and at position 1 the distance from the comet to the Sun is 10 times that at position 2. At position 2, the comet’s kinetic energy is
The system above is NOT balanced since \(m_2\) is twice the mass of \(m_1\). Which of the following changes would NOT balance the system so that there is 0 net torque? Assume the plank has no mass of its own.
In lacrosse, a typical throw is made by rotating the stick through an angle of roughly 90°, then releasing the ball when the stick is vertical, as shown above. If the 1 meter long stick is at rest when horizontal and the ball leaves the stick with a velocity of 10 m/s, what angular acceleration must the stick experience?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?