0 attempts
0% avg
UBQ Credits
(a) Calculate the linear speed of the sphere when it reaches the bottom of the incline.
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex]h = L \sin(\theta)[/katex] | Calculate the vertical height [katex]h[/katex] fallen by the sphere using the length of the incline [katex]L[/katex] and the sine of the incline angle [katex]\theta[/katex]. |
| 2 | [katex]h = 7.0 \sin(35^\circ)[/katex] | Substitute [katex]L = 7.0 \, m[/katex] and [katex]\theta = 35^\circ[/katex]. |
| 3 | [katex]PE_{\text{top}} = KE_{\text{trans}} + KE_{\text{rot}}[/katex] | Use the conservation of mechanical energy, where potential energy at the top is equal to the sum of transnational kinetic energy and rotational kinetic energy at the bottom. |
| 4 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2[/katex] | Express the conservation of energy equation in terms of [katex]v[/katex] (linear velocity) and [katex]\omega[/katex] (angular velocity). |
| 5 | [katex]I = \frac{2}{5}MR^2[/katex] | Substitute the given moment of inertia for a solid sphere, where [katex]I = \frac{2}{5}MR^2[/katex]. |
| 6 | [katex]v = R\omega[/katex] | Relation between linear velocity and angular velocity for rolling without slipping. |
| 7 | [katex]\omega = \frac{v}{R}[/katex] | Rearrange the equation for [katex]\omega[/katex]. |
| 8 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{5}MR^2)(\frac{v}{R})^2[/katex] | Substitute [katex]I[/katex] and [katex]\omega[/katex] in terms of [katex]v[/katex] and [katex]R[/katex]. |
| 9 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{5}mv^2[/katex] | Simplify the equation by canceling [katex]M[/katex] and [katex]R[/katex]. |
| 10 | [katex]mgh = \frac{7}{10}mv^2[/katex] | Combine like terms. |
| 11 | [katex]v^2 = \frac{10}{7}gh[/katex] | Isolate [katex]v^2[/katex]. |
| 12 | [katex]v = \sqrt{\frac{10}{7}gh}[/katex] | Take the square root to find [katex]v[/katex]. |
| 13 | [katex]v = \sqrt{\frac{10}{7}(9.8)(7.0 \sin(35^\circ))}[/katex] | Substitute the values of [katex]g[/katex] and [katex]h[/katex]. |
| 14 | [katex]\boxed{v \approx 7.5 \, \text{m/s}}[/katex] | Final answer. |
(b) Determine the angular speed of the sphere at the bottom of the incline.
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex]\omega = \frac{v}{R}[/katex] | Use the relation between linear and angular velocities for a rolling object. |
| 2 | [katex]\omega = \frac{7.5}{0.15}[/katex] | Substitute [katex]v = 7.5 \, \text{m/s}[/katex] and [katex]R = 0.15 \, m[/katex] (converted from cm). |
| 3 | [katex]\boxed{\omega \approx 50 \, \text{rad/s}}[/katex] | Final answer. |
(c) Does the linear speed depend on the radius or mass of the sphere?
| Step | Analysis | Conclusion |
|---|---|---|
| 1 | From the energy conservation equation, the mass [katex]m[/katex] cancelled out and the final expression for [katex]v[/katex] didn’t include the radius [katex]R[/katex]. | The linear speed does not depend on the mass or radius of the sphere as both factors were eliminated in deriving [katex]v[/katex]. |
(d) Does the angular speed depend on the radius or mass of the sphere?
| Step | Analysis | Conclusion |
|---|---|---|
| 1 | Angular speed [katex]\omega[/katex] was found from [katex]v[/katex] divided by [katex]R[/katex], but it did not involve mass [katex]m[/katex]. | Angular speed does depend on the radius and does not depend on the mass of the sphere. |
Just ask: "Help me solve this problem."
Suppose a solid uniform sphere of mass M and radius R rolls without slipping down an inclined plane starting from rest. The angular velocity of the sphere at the bottom of the incline depends on

Three forces of equal magnitude are applied to a \( 3 \)-m by \( 2 \)-m rectangle. Force \( F_1 \) and \( F_2 \) act at \( 45^\circ \) angles to the vertical as shown, while \( F_3 \) acts horizontally.
A horizontal, uniform board of weight 125 N and length 4 m is supported by vertical chains at each end. A person weighing 500 N is sitting on the board. The tension in the right chain is 250 N. How far from the left end of the board is the person sitting?

A point on the edge of a disk rotates around the center of the disk with an initial angular velocity of 3 rad/s clockwise. The graph shows the point’s angular acceleration as a function of time. The positive direction is considered to be counterclockwise. All frictional forces are considered to be negligible.
A disk increases from 2 complete revolutions in 2 seconds to 5 complete revolutions in 2 seconds. What is its average angular acceleration?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?