0 attempts
0% avg
UBQ Credits
(a) Calculate the linear speed of the sphere when it reaches the bottom of the incline.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]h = L \sin(\theta)[/katex] | Calculate the vertical height [katex]h[/katex] fallen by the sphere using the length of the incline [katex]L[/katex] and the sine of the incline angle [katex]\theta[/katex]. |
2 | [katex]h = 7.0 \sin(35^\circ)[/katex] | Substitute [katex]L = 7.0 \, m[/katex] and [katex]\theta = 35^\circ[/katex]. |
3 | [katex]PE_{\text{top}} = KE_{\text{trans}} + KE_{\text{rot}}[/katex] | Use the conservation of mechanical energy, where potential energy at the top is equal to the sum of transnational kinetic energy and rotational kinetic energy at the bottom. |
4 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2[/katex] | Express the conservation of energy equation in terms of [katex]v[/katex] (linear velocity) and [katex]\omega[/katex] (angular velocity). |
5 | [katex]I = \frac{2}{5}MR^2[/katex] | Substitute the given moment of inertia for a solid sphere, where [katex]I = \frac{2}{5}MR^2[/katex]. |
6 | [katex]v = R\omega[/katex] | Relation between linear velocity and angular velocity for rolling without slipping. |
7 | [katex]\omega = \frac{v}{R}[/katex] | Rearrange the equation for [katex]\omega[/katex]. |
8 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{5}MR^2)(\frac{v}{R})^2[/katex] | Substitute [katex]I[/katex] and [katex]\omega[/katex] in terms of [katex]v[/katex] and [katex]R[/katex]. |
9 | [katex]mgh = \frac{1}{2}mv^2 + \frac{1}{5}mv^2[/katex] | Simplify the equation by canceling [katex]M[/katex] and [katex]R[/katex]. |
10 | [katex]mgh = \frac{7}{10}mv^2[/katex] | Combine like terms. |
11 | [katex]v^2 = \frac{10}{7}gh[/katex] | Isolate [katex]v^2[/katex]. |
12 | [katex]v = \sqrt{\frac{10}{7}gh}[/katex] | Take the square root to find [katex]v[/katex]. |
13 | [katex]v = \sqrt{\frac{10}{7}(9.8)(7.0 \sin(35^\circ))}[/katex] | Substitute the values of [katex]g[/katex] and [katex]h[/katex]. |
14 | [katex]\boxed{v \approx 7.5 \, \text{m/s}}[/katex] | Final answer. |
(b) Determine the angular speed of the sphere at the bottom of the incline.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\omega = \frac{v}{R}[/katex] | Use the relation between linear and angular velocities for a rolling object. |
2 | [katex]\omega = \frac{7.5}{0.15}[/katex] | Substitute [katex]v = 7.5 \, \text{m/s}[/katex] and [katex]R = 0.15 \, m[/katex] (converted from cm). |
3 | [katex]\boxed{\omega \approx 50 \, \text{rad/s}}[/katex] | Final answer. |
(c) Does the linear speed depend on the radius or mass of the sphere?
Step | Analysis | Conclusion |
---|---|---|
1 | From the energy conservation equation, the mass [katex]m[/katex] cancelled out and the final expression for [katex]v[/katex] didn’t include the radius [katex]R[/katex]. | The linear speed does not depend on the mass or radius of the sphere as both factors were eliminated in deriving [katex]v[/katex]. |
(d) Does the angular speed depend on the radius or mass of the sphere?
Step | Analysis | Conclusion |
---|---|---|
1 | Angular speed [katex]\omega[/katex] was found from [katex]v[/katex] divided by [katex]R[/katex], but it did not involve mass [katex]m[/katex]. | Angular speed does depend on the radius and does not depend on the mass of the sphere. |
Just ask: "Help me solve this problem."
Four identical lead balls with large mass are connected by rigid but very light rods in the square configuration shown in the preceding figure. The balls are rotated about the three labeled axes. Which of the following correctly ranks the rotational inertia \(I\) of the balls about each axis?
A rod may freely rotate about an axis that is perpendicular to the rod and is along the plane of the page. The rod is divided into four sections of equal length of 0.2 m each, and four forces are exerted on the rod, as shown in the figure. Frictional forces are considered negligible. Which of the following describes an additional torque that must be applied in order to keep the rod from rotating?
A boy is sitting at a distance [katex] d_1 [/katex] from the fulcrum, and girl is sitting at a distance [katex] d_2 [/katex] from the fulcrum, with [katex] d_1 > d_2 [/katex]. The seesaw is level, with the two ends at the same height. Derive an equation for the minimum mass of the seesaw that will keep it balanced with the two children on it.
A uniform ladder of length L and weight [katex] W = 50 N [/katex] rests against a smooth vertical wall. If the coefficient of static friction between the ladder and the ground is [katex] \mu = .4 [/katex].
A friend is balancing a fork on one finger. Which of the following are correct explanations of how he accomplishes this? Select two answers.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.