AP Physics

Unit 6 - Rotational Motion

Advanced

Mathematical

GQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 \[W_b = 1450 \times 9.8,\quad W_{block} = 80 \times 9.8\] Compute the weights of the steel beam and the block using \(g=9.8\,\text{m/s}^2\).
2 \[d_b = \frac{6.6}{2} = 3.3\,\text{m},\quad d_{block} = 6.6 – 2 = 4.6\,\text{m}\] The beam’s weight acts at its midpoint, and the block is placed 2 m from the free (cable) end so its distance from the wall is \(6.6-2=4.6\,\text{m}\).
3 \[T\sin(30^\circ)\times 6.6 = W_b\times3.3 + W_{block}\times4.6\] Take moments about the wall. Only the vertical component of the cable’s tension produces a moment. The beam’s and block’s weights (acting downward) tend to rotate the beam clockwise, while the vertical component of the cable (acting upward) produces a counterclockwise moment.
4 \[T = \frac{W_b\times3.3 + W_{block}\times4.6}{6.6\sin(30^\circ)}\] Solve the moment equation for the cable tension \(T\).
5 \[T = \frac{1450(9.8)(3.3) + 80(9.8)(4.6)}{6.6\times0.5}\] Substitute the numerical values and use \(\sin(30^\circ)=0.5\).
6 \[T = \frac{(1450\times9.8\times3.3)+(80\times9.8\times4.6)}{3.3}\] Simplify the denominator since \(6.6\times0.5 = 3.3\).
7 \[T \approx \frac{46893+3606.4}{3.3} \approx \frac{50499.4}{3.3} \approx 15303\,\text{N}\] The numerator comes from \(1450\times9.8\times3.3\approx46893\,\text{N}\cdot\text{m}\) and \(80\times9.8\times4.6\approx3606.4\,\text{N}\cdot\text{m}\). Dividing by 3.3 gives the cable tension.
8 \[\boxed{T \approx 1.53 \times 10^{4}\,\text{N} \text{ (directed along the cable, }30^\circ\text{ above horizontal)}}\] This is the force between the cable and the wall; the cable pulls on the wall along its length, at \(30^\circ\) above the horizontal.

 

Step Derivation/Formula Reasoning
1 \[R_x = T\cos(30^\circ)\] For horizontal equilibrium of the beam, the cable’s horizontal pull must be balanced by the wall’s horizontal reaction.
2 \[R_x \approx 15303\times0.866 \approx 13245\,\text{N}\] Using \(\cos(30^\circ)\approx0.866\), calculate the horizontal component of the reaction force.
3 \[R_y = (W_b + W_{block}) – T\sin(30^\circ)\] For vertical equilibrium the wall’s vertical reaction plus the cable’s vertical component must support the weights of the beam and block.
4 \[R_y = (1450\times9.8+80\times9.8) – 15303\times0.5\] Substitute the values, recalling that \(1450+80=1530\) and \(\sin(30^\circ)=0.5\).
5 \[R_y \approx 1530\times9.8 – 7651.5 \approx 14994 – 7651.5 \approx 7342.5\,\text{N}\] Compute the total weight, then subtract the cable’s vertical contribution to find the vertical reaction at the wall.
6 \[R = \sqrt{R_x^2+R_y^2} \approx \sqrt{(13245)^2+(7342.5)^2} \approx 15152\,\text{N}\] Combine the horizontal and vertical components to get the magnitude of the reaction force at the beam–wall contact.
7 \[\theta_R = \tan^{-1}\left(\frac{R_y}{R_x}\right) \approx \tan^{-1}\left(\frac{7342.5}{13245}\right) \approx 29^\circ\] Determine the angle of the reaction force relative to the horizontal.
8 \[\boxed{R \approx 1.52 \times 10^{4}\,\text{N} \text{ at }29^\circ \text{ above the horizontal}}\] This is the net force between the steel beam and the wall. Its horizontal component balances the cable’s pull and its vertical component supports the beam and block.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(T \approx 1.53 \times 10^{4}\,\text{N} \text{ (directed along the cable, }30^\circ\text{ above horizontal)}\)
  2. \(R \approx 1.52 \times 10^{4}\,\text{N} \text{ at }29^\circ \text{ above the horizontal}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.