0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ m_b \, v_i = \Bigl(m_b + m_{\text{block}}\Bigr) \, v_x \] | Apply conservation of momentum for the inelastic collision where the bullet embeds in the block. |
| 2 | \[ 0.05 \times 200 = (0.05 + 1.3) \, v_x \] | Substitute the given values: bullet mass \(m_b=0.05\,\text{kg}\), bullet initial speed \(v_i=200\,\text{m/s}\), and block mass \(1.3\,\text{kg}\). |
| 3 | \[ 10 = 1.35 \, v_x \] | Simplify the multiplication and sum of masses. |
| 4 | \[ v_x = \frac{10}{1.35} \] | Solve for the block’s speed immediately after the collision. |
| 5 | \[ \boxed{ v_x \approx 7.41\,\text{m/s} } \] | This is the final speed of the block (with bullet embedded) immediately after impact. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ \frac{1}{2} (m_b+m_{\text{block}}) \, v_x^2 = \frac{1}{2} k \, (\Delta x)^2 \] | At maximum compression of the spring the block’s kinetic energy is completely converted into spring potential energy. |
| 2 | \[ (m_b+m_{\text{block}}) \, v_x^2 = k \, (\Delta x)^2 \] | Simplify by canceling the common factor \( \frac{1}{2} \) on both sides. |
| 3 | \[ (\Delta x)^2 = \frac{(m_b+m_{\text{block}}) \, v_x^2}{k} \] | Rearrange to solve for the square of the displacement (amplitude) \( \Delta x \). |
| 4 | \[ \Delta x = \sqrt{\frac{1.35 \times (7.41)^2}{2500}} \] | Substitute \(m_b+m_{\text{block}}=1.35\,\text{kg}\), \(v_x\approx7.41\,\text{m/s}\), and \(k=2500\,\text{N/m}\). |
| 5 | \[ \Delta x \approx \sqrt{\frac{1.35 \times 54.93}{2500}} \] | Since \((7.41)^2 \approx 54.93\), the numerator calculates to approximately \(74.15\). |
| 6 | \[ \Delta x \approx \sqrt{0.02966} \] | Divide the numerator \(74.15\) by \(2500\) to obtain the value inside the square root. |
| 7 | \[ \boxed{ \Delta x \approx 0.172\,\text{m} } \] | This is the amplitude of the resulting oscillation of the block-spring system. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ \omega = \sqrt{\frac{k}{m_b+m_{\text{block}}}} \] | For a mass-spring system executing simple harmonic motion, the angular frequency \( \omega \) is determined by this formula. |
| 2 | \[ \omega = \sqrt{\frac{2500}{1.35}} \] | Substitute \(k=2500\,\text{N/m}\) and \(m_b+m_{\text{block}}=1.35\,\text{kg}\) into the formula. |
| 3 | \[ \omega \approx 43.03\,\text{rad/s} \] | Calculate the square root to approximate the angular frequency. |
| 4 | \[ f = \frac{\omega}{2\pi} \] | The relationship between angular frequency \( \omega \) and frequency \( f \) is given by \( f = \omega/(2\pi) \). |
| 5 | \[ f \approx \frac{43.03}{2\pi} \] | Substitute the computed value of \( \omega \) into the frequency expression. |
| 6 | \[ \boxed{ f \approx 6.85\,\text{Hz} } \] | This is the frequency of the oscillatory motion of the block. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ x(t) = \Delta x \, \sin(\omega t) \] | The standard equation for simple harmonic motion where the displacement is zero at \(t=0\) and the velocity is maximum. |
| 2 | \[ x(t) = 0.172 \, \sin(43.03\,t) \] | Substitute the amplitude \(\Delta x \approx 0.172\,\text{m}\) and angular frequency \(\omega \approx 43.03\,\text{rad/s}\) into the general equation. |
| 3 | \[ \boxed{ x(t) = 0.172 \, \sin(43.03\,t) } \] | This is the complete equation of motion for the block on the spring, with \(x(0)=0\). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ T = \frac{2\pi}{\omega} \] | The period \(T\) of a simple harmonic oscillator is given by this formula. |
| 2 | \[ T = \frac{2\pi}{43.03} \] | Substitute the angular frequency \(\omega \approx 43.03\,\text{rad/s}\) into the period formula. |
| 3 | \[ \boxed{ T \approx 0.146\,\text{s} } \] | This is the period of the oscillation of the block-spring system. |
Just ask: "Help me solve this problem."

A small block moving with a constant speed \(v\) collides inelastically with a block \(M\) attached to one end of a spring \(k\). The other end of the spring is connected to a stationary wall. Ignore friction between the blocks and the surface.
A pendulum with a period of \( 1 \) \( \text{s} \) on Earth, where the acceleration due to gravity is \( g \), is taken to another planet, where its period is \( 2 \) \( \text{s} \). The acceleration due to gravity on the other planet is most nearly
A pendulum has a period of \(2.0 \, \text{s}\) on Earth. What is its length?

A ball of mass \(m\) is released from rest at a distance \(h\) above a frictionless plane inclined at an angle of \(45^\circ\) to the horizontal as shown above. The ball bounces horizontally off the plane at point \(P_1\) with the same speed with which it struck the plane and strikes the plane again at point \(P_2\). In terms of \(g\) and \(h\), determine each of the following quantities:
A \(10 \, \text{meter}\) long pendulum on the earth, is set into motion by releasing it from a maximum angle of less than \(10^\circ\) relative to the vertical. At what time \(t\) will the pendulum have fallen to a perfectly vertical orientation?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?