0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ m_b \, v_i = \Bigl(m_b + m_{\text{block}}\Bigr) \, v_x \] | Apply conservation of momentum for the inelastic collision where the bullet embeds in the block. |
2 | \[ 0.05 \times 200 = (0.05 + 1.3) \, v_x \] | Substitute the given values: bullet mass \(m_b=0.05\,\text{kg}\), bullet initial speed \(v_i=200\,\text{m/s}\), and block mass \(1.3\,\text{kg}\). |
3 | \[ 10 = 1.35 \, v_x \] | Simplify the multiplication and sum of masses. |
4 | \[ v_x = \frac{10}{1.35} \] | Solve for the block’s speed immediately after the collision. |
5 | \[ \boxed{ v_x \approx 7.41\,\text{m/s} } \] | This is the final speed of the block (with bullet embedded) immediately after impact. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ \frac{1}{2} (m_b+m_{\text{block}}) \, v_x^2 = \frac{1}{2} k \, (\Delta x)^2 \] | At maximum compression of the spring the block’s kinetic energy is completely converted into spring potential energy. |
2 | \[ (m_b+m_{\text{block}}) \, v_x^2 = k \, (\Delta x)^2 \] | Simplify by canceling the common factor \( \frac{1}{2} \) on both sides. |
3 | \[ (\Delta x)^2 = \frac{(m_b+m_{\text{block}}) \, v_x^2}{k} \] | Rearrange to solve for the square of the displacement (amplitude) \( \Delta x \). |
4 | \[ \Delta x = \sqrt{\frac{1.35 \times (7.41)^2}{2500}} \] | Substitute \(m_b+m_{\text{block}}=1.35\,\text{kg}\), \(v_x\approx7.41\,\text{m/s}\), and \(k=2500\,\text{N/m}\). |
5 | \[ \Delta x \approx \sqrt{\frac{1.35 \times 54.93}{2500}} \] | Since \((7.41)^2 \approx 54.93\), the numerator calculates to approximately \(74.15\). |
6 | \[ \Delta x \approx \sqrt{0.02966} \] | Divide the numerator \(74.15\) by \(2500\) to obtain the value inside the square root. |
7 | \[ \boxed{ \Delta x \approx 0.172\,\text{m} } \] | This is the amplitude of the resulting oscillation of the block-spring system. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ \omega = \sqrt{\frac{k}{m_b+m_{\text{block}}}} \] | For a mass-spring system executing simple harmonic motion, the angular frequency \( \omega \) is determined by this formula. |
2 | \[ \omega = \sqrt{\frac{2500}{1.35}} \] | Substitute \(k=2500\,\text{N/m}\) and \(m_b+m_{\text{block}}=1.35\,\text{kg}\) into the formula. |
3 | \[ \omega \approx 43.03\,\text{rad/s} \] | Calculate the square root to approximate the angular frequency. |
4 | \[ f = \frac{\omega}{2\pi} \] | The relationship between angular frequency \( \omega \) and frequency \( f \) is given by \( f = \omega/(2\pi) \). |
5 | \[ f \approx \frac{43.03}{2\pi} \] | Substitute the computed value of \( \omega \) into the frequency expression. |
6 | \[ \boxed{ f \approx 6.85\,\text{Hz} } \] | This is the frequency of the oscillatory motion of the block. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ x(t) = \Delta x \, \sin(\omega t) \] | The standard equation for simple harmonic motion where the displacement is zero at \(t=0\) and the velocity is maximum. |
2 | \[ x(t) = 0.172 \, \sin(43.03\,t) \] | Substitute the amplitude \(\Delta x \approx 0.172\,\text{m}\) and angular frequency \(\omega \approx 43.03\,\text{rad/s}\) into the general equation. |
3 | \[ \boxed{ x(t) = 0.172 \, \sin(43.03\,t) } \] | This is the complete equation of motion for the block on the spring, with \(x(0)=0\). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ T = \frac{2\pi}{\omega} \] | The period \(T\) of a simple harmonic oscillator is given by this formula. |
2 | \[ T = \frac{2\pi}{43.03} \] | Substitute the angular frequency \(\omega \approx 43.03\,\text{rad/s}\) into the period formula. |
3 | \[ \boxed{ T \approx 0.146\,\text{s} } \] | This is the period of the oscillation of the block-spring system. |
Just ask: "Help me solve this problem."
A \( 1000 \) \( \text{kg} \) car is traveling east at \( 20 \) \( \text{m/s} \) when it collides perfectly inelastically with a northbound \( 2000 \) \( \text{kg} \) car traveling at \( 15 \) \( \text{m/s} \). If the coefficient of kinetic friction is \( 0.9 \), how far, and at what angle do the two cars skid before coming to a stop?
A bullet of mass 0.0500 kg traveling at 50.0 m/s is fired horizontally into a wooden block suspended from a long rope. The mass of the wooden block is 0.300 kg and it is initially at rest. The collision is completely inelastic and after impact the bullet+ wooden block move together until the center of mass of the system rises a vertical distance h above its initial position.
A 0.035 kg bullet moving horizontally at 350 m/s embeds itself into an initially stationary 0.55 kg block. Air resistance is negligible.
Two blocks connected to a compressed spring move right at speed v. After releasing the spring, the left block moves left at speed [katex] v_2 [/katex], the right block moves right. What is the center speed of the blocks then?
A 70 kg woman and her 35 kg son are standing at rest on an ice rink, as shown above. They push against each other for a time of 0.60 s, causing them to glide apart. The speed of the woman immediately after they separate is 0.55 m/s.
Assume that during the push, friction is negligible compared with the forces the people exert on each other.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.