AP Physics

Unit 7 - Simple Harmonic Motion

Intermediate

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 \[ m_b \, v_i = \Bigl(m_b + m_{\text{block}}\Bigr) \, v_x \] Apply conservation of momentum for the inelastic collision where the bullet embeds in the block.
2 \[ 0.05 \times 200 = (0.05 + 1.3) \, v_x \] Substitute the given values: bullet mass \(m_b=0.05\,\text{kg}\), bullet initial speed \(v_i=200\,\text{m/s}\), and block mass \(1.3\,\text{kg}\).
3 \[ 10 = 1.35 \, v_x \] Simplify the multiplication and sum of masses.
4 \[ v_x = \frac{10}{1.35} \] Solve for the block’s speed immediately after the collision.
5 \[ \boxed{ v_x \approx 7.41\,\text{m/s} } \] This is the final speed of the block (with bullet embedded) immediately after impact.

 

Step Derivation/Formula Reasoning
1 \[ \frac{1}{2} (m_b+m_{\text{block}}) \, v_x^2 = \frac{1}{2} k \, (\Delta x)^2 \] At maximum compression of the spring the block’s kinetic energy is completely converted into spring potential energy.
2 \[ (m_b+m_{\text{block}}) \, v_x^2 = k \, (\Delta x)^2 \] Simplify by canceling the common factor \( \frac{1}{2} \) on both sides.
3 \[ (\Delta x)^2 = \frac{(m_b+m_{\text{block}}) \, v_x^2}{k} \] Rearrange to solve for the square of the displacement (amplitude) \( \Delta x \).
4 \[ \Delta x = \sqrt{\frac{1.35 \times (7.41)^2}{2500}} \] Substitute \(m_b+m_{\text{block}}=1.35\,\text{kg}\), \(v_x\approx7.41\,\text{m/s}\), and \(k=2500\,\text{N/m}\).
5 \[ \Delta x \approx \sqrt{\frac{1.35 \times 54.93}{2500}} \] Since \((7.41)^2 \approx 54.93\), the numerator calculates to approximately \(74.15\).
6 \[ \Delta x \approx \sqrt{0.02966} \] Divide the numerator \(74.15\) by \(2500\) to obtain the value inside the square root.
7 \[ \boxed{ \Delta x \approx 0.172\,\text{m} } \] This is the amplitude of the resulting oscillation of the block-spring system.

 

Step Derivation/Formula Reasoning
1 \[ \omega = \sqrt{\frac{k}{m_b+m_{\text{block}}}} \] For a mass-spring system executing simple harmonic motion, the angular frequency \( \omega \) is determined by this formula.
2 \[ \omega = \sqrt{\frac{2500}{1.35}} \] Substitute \(k=2500\,\text{N/m}\) and \(m_b+m_{\text{block}}=1.35\,\text{kg}\) into the formula.
3 \[ \omega \approx 43.03\,\text{rad/s} \] Calculate the square root to approximate the angular frequency.
4 \[ f = \frac{\omega}{2\pi} \] The relationship between angular frequency \( \omega \) and frequency \( f \) is given by \( f = \omega/(2\pi) \).
5 \[ f \approx \frac{43.03}{2\pi} \] Substitute the computed value of \( \omega \) into the frequency expression.
6 \[ \boxed{ f \approx 6.85\,\text{Hz} } \] This is the frequency of the oscillatory motion of the block.

 

Step Derivation/Formula Reasoning
1 \[ x(t) = \Delta x \, \sin(\omega t) \] The standard equation for simple harmonic motion where the displacement is zero at \(t=0\) and the velocity is maximum.
2 \[ x(t) = 0.172 \, \sin(43.03\,t) \] Substitute the amplitude \(\Delta x \approx 0.172\,\text{m}\) and angular frequency \(\omega \approx 43.03\,\text{rad/s}\) into the general equation.
3 \[ \boxed{ x(t) = 0.172 \, \sin(43.03\,t) } \] This is the complete equation of motion for the block on the spring, with \(x(0)=0\).

 

Step Derivation/Formula Reasoning
1 \[ T = \frac{2\pi}{\omega} \] The period \(T\) of a simple harmonic oscillator is given by this formula.
2 \[ T = \frac{2\pi}{43.03} \] Substitute the angular frequency \(\omega \approx 43.03\,\text{rad/s}\) into the period formula.
3 \[ \boxed{ T \approx 0.146\,\text{s} } \] This is the period of the oscillation of the block-spring system.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(\boxed{ v_x \approx 7.41\,\text{m/s} } \)
  2. \( \boxed{ \Delta x \approx 0.172\,\text{m} } \)
  3. \( \boxed{ f \approx 6.85\,\text{Hz} } \)
  4. \( \boxed{ x(t) = 0.172 \, \sin(43.03\,t) } \)
  5. \( \boxed{ T \approx 0.146\,\text{s} } \)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.