0 attempts
0% avg
UBQ Credits
(a) Calculation of the angular frequency (\(\omega\)) of the oscillation:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(\omega = \sqrt{\frac{g}{L}}\) | The angular frequency formula for a simple pendulum, where \(g\) is the acceleration due to gravity \(9.8 \, \text{m/s}^2\) and \(L\) is the length of the pendulum. |
2 | \(\omega = \sqrt{\frac{9.8}{1.2}}\) | Substitute \(g = 9.8 \, \text{m/s}^2\) and \(L = 1.2 \, \text{m}\) into the formula. |
3 | \(\omega = \sqrt{8.17}\) | Calculate the division inside the square root. |
4 | \(\omega \approx 2.86 \, \text{rad/s}\) | Calculate the square root to find the angular frequency. |
(b) Calculation of the period (\(T\)) of oscillation:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(T = \frac{2\pi}{\omega}\) | The period of oscillation is the reciprocal of the angular frequency multiplied by \(2\pi\). |
2 | \(T = \frac{2\pi}{2.86}\) | Substitute the angular frequency value found earlier. |
3 | \(T \approx 2.20 \, \text{s}\) | Calculate the period. |
(c) Calculation of the maximum speed of the pendulum:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(v_{\text{max}} = \omega A\) | Maximum speed is the product of angular frequency and amplitude. |
2 | \(A = 1.2 \cdot \sin(10^\circ)\) | Convert amplitude from degrees to a distance using the pendulum length (1.2 m) and the sine of 10 degrees. |
3 | \(A \approx 0.208\, \text{m}\) | Calculate the amplitude in meters. |
4 | \(v_{\text{max}} = 2.86 \cdot 0.208\) | Substitute the values of \( \omega \) and \( A \) to find maximum velocity. |
5 | \(v_{\text{max}} \approx 0.595 \, \text{m/s}\) | Compute the maximum speed. |
(d) Calculation of the maximum acceleration of the pendulum:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(a_{\text{max}} = \omega^2 A\) | Maximum acceleration is the product of the square of angular frequency and amplitude. |
2 | \(a_{\text{max}} = (2.86)^2 \times 0.208\) | Substitute the values of \( \omega \) and \( A \). |
3 | \(a_{\text{max}} \approx 1.70 \, \text{m/s}^2\) | Calculate the maximum acceleration. |
(e) Determine the acceleration due to gravity on the Exoplanet:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(f = \frac{1}{T}\) | Frequency is the reciprocal of the period. |
2 | \(T = \frac{1}{2.3}\) | Substitute the frequency of oscillation (2.3 Hz). |
3 | \(T \approx 0.435 \, \text{s}\) | Compute the period of oscillation on the Exoplanet. |
4 | \(T = 2\pi \sqrt{\frac{L}{g_{\text{exo}}}}\) | Use the period expression in terms of gravity and pendulum length to solve for gravity on the Exoplanet. |
5 | \(\frac{0.435}{2\pi} = \sqrt{\frac{1.2}{g_{\text{exo}}}}\) | Rearrange to express \(\frac{T}{2\pi}\) in terms of known values. |
6 | \(g_{\text{exo}} = \frac{1.2}{(0.435/(2\pi))^2}\) | Solve for the gravitational acceleration. |
7 | \(g_{\text{exo}} \approx 90 \, \text{m/s}^2\) | Calculate to find the acceleration due to gravity on the Exoplanet. |
Just ask: "Help me solve this problem."
A 0.2 kg object is attached to a horizontal spring undergoes SHM with the total energy of 0.4 J. The kinetic energy as a function of position presented by the graph.
A [katex] 2 \, \text{kg}[/katex] mass is attached to a spring with spring constant [katex] k = 100 \, \text{N/m}[/katex] and negligible mass.
A pendulum with a period of \( 1 \) \( \text{s} \) on Earth, where the acceleration due to gravity is \( g \), is taken to another planet, where its period is \( 2 \) \( \text{s} \). The acceleration due to gravity on the other planet is most nearly
A student sets an object attached to a spring into oscillatory motion and uses a motion detector to record the velocity of the object as a function of time. The total change in the object’s speed between 1.0 s and 1.1 s is most nearly
A block attached to spring demonstrates simple harmonic motion about its equilibrium position with amplitude [katex] A [/katex] and angular frequency [katex] \omega [/katex]. What is the maximum magnitude of the block’s velocity?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.