0 attempts
0% avg
UBQ Credits
# Part (a) Determine the sprinter’s constant acceleration during the first \(2 \, \text{seconds}\).
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]d_1 = 100 \, \text{m} \, – \, 90 \, \text{m} = 10 \, \text{m}[/katex] | The first part of the sprint covers 10 meters. |
2 | [katex]d_1 = \frac{1}{2} a t_1^2[/katex] | Use the formula for distance under constant acceleration starting from rest: [katex]d = \frac{1}{2} a t^2[/katex]. |
3 | [katex]10 \, \text{m} = \frac{1}{2} a (2 \, \text{s})^2 [/katex] | Substitute [katex] d_1 = 10 \, \text{m} [/katex] and [katex] t_1 = 2 \, \text{s} [/katex]. |
4 | [katex]10 \, \text{m} = 2 a \, \text{s}^2 [/katex] | Simplify the equation. |
5 | [katex]a = 5 \, \text{m/s}^2 [/katex] | Solving for acceleration gives [katex]a[/katex]. |
6 | [katex]a = 5 \, \text{m/s}^2[/katex] | Constant acceleration value. |
# Part (b) Determine the sprinter’s velocity after 2 seconds have elapsed.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v = a t_1 [/katex] | Using the formula for velocity under constant acceleration: [katex]v = a t[/katex]. |
2 | [katex]v = 5 \, \text{m/s}^2 \times 2 \, \text{s}[/katex] | Substitute [katex] a = 5 \, \text{m/s}^2 [/katex] and [katex] t_1 = 2 \, \text{s} [/katex]. |
3 | [katex]v = 10 \, \text{m/s}[/katex] | Solve for [katex]v[/katex]. |
# Part (c) Determine the total time needed to run the full 100 meters.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v = d_2 / t_2 [/katex] | The velocity [katex]v[/katex] is constant for the remaining part of the race. |
2 | [katex]10 \, \text{m/s} = 90 \, \text{m} / t_2 [/katex] | Substitute [katex] v = 10 \, \text{m/s} [/katex] and [katex] d_2 = 90 \, \text{m} [/katex]. |
3 | [katex]t_2 = 90 \, \text{m} / 10 \, \text{m/s} [/katex] | Rearrange to solve for [katex] t_2 [/katex]. |
4 | [katex]t_2 = 9 \, \text{s} [/katex] | Solve for [katex] t_2 [/katex]. |
5 | [katex]t_{\text{total}} = t_1 + t_2 = 2 \, \text{s} + 9 \, \text{s} [/katex] | The total time is the sum of the two intervals. |
6 | [katex]t_{\text{total}} = 11 \, \text{s} [/katex] | Total time to run 100 meters. |
# Part (d) Draw the displacement vs time curve for the sprinter.
The displacement vs. time graph would show a parabolic curve for the first 2 seconds and a linear relationship thereafter to indicate constant velocity:
1. From [katex] t = 0 [/katex] to [katex] t = 2 [/katex] seconds, the curve will be a parabola opening upwards.
2. From [katex] t = 2[/katex] seconds to [katex] t = 11 [/katex] seconds, the curve will be a straight line with a constant slope of [katex]10 \, \text{m/s}[/katex].
Just ask: "Help me solve this problem."
Two objects are dropped from rest from the same height. Object \( A \) falls through a distance \( d_A \) during a time \( t \), and object \( B \) falls through a distance \( d_B \) during a time \( 2t \). If air resistance is negligible, what is the relationship between \( d_A \) and \( d_B \)?
The graph in the figure shows the position of a particle as it travels along the x-axis. At what value of \(t\) is the speed of the particle equal to \(0 \, \text{m/s}\)?
note that the slope of position vs time is velocity. And the graph most closely reemsbles a flat or 0 slope at 3 seconds
A \(30 \, \text{g}\) bullet is fired with a speed of \(500 \, \text{m/s}\) into a wall.
A rocket is sent to shoot down an invading spacecraft that is hovering at an altitude of \( 1500 \, \text{m} \). The rocket is launched with an initial velocity of \( 180 \, \text{m/s} \). Find the following:
A mine shaft is known to be 57.8 m deep. If you dropped a rock down the shaft, how long would it take for you to hear the sound of the rock hitting the bottom of the shaft knowing that sound travels at a constant velocity of 345 m/s?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.