0 attempts
0% avg
UBQ Credits
# Part (a) Determine the sprinter’s constant acceleration during the first \(2 \, \text{seconds}\).
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]d_1 = 100 \, \text{m} \, – \, 90 \, \text{m} = 10 \, \text{m}[/katex] | The first part of the sprint covers 10 meters. |
2 | [katex]d_1 = \frac{1}{2} a t_1^2[/katex] | Use the formula for distance under constant acceleration starting from rest: [katex]d = \frac{1}{2} a t^2[/katex]. |
3 | [katex]10 \, \text{m} = \frac{1}{2} a (2 \, \text{s})^2 [/katex] | Substitute [katex] d_1 = 10 \, \text{m} [/katex] and [katex] t_1 = 2 \, \text{s} [/katex]. |
4 | [katex]10 \, \text{m} = 2 a \, \text{s}^2 [/katex] | Simplify the equation. |
5 | [katex]a = 5 \, \text{m/s}^2 [/katex] | Solving for acceleration gives [katex]a[/katex]. |
6 | [katex]a = 5 \, \text{m/s}^2[/katex] | Constant acceleration value. |
# Part (b) Determine the sprinter’s velocity after 2 seconds have elapsed.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v = a t_1 [/katex] | Using the formula for velocity under constant acceleration: [katex]v = a t[/katex]. |
2 | [katex]v = 5 \, \text{m/s}^2 \times 2 \, \text{s}[/katex] | Substitute [katex] a = 5 \, \text{m/s}^2 [/katex] and [katex] t_1 = 2 \, \text{s} [/katex]. |
3 | [katex]v = 10 \, \text{m/s}[/katex] | Solve for [katex]v[/katex]. |
# Part (c) Determine the total time needed to run the full 100 meters.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v = d_2 / t_2 [/katex] | The velocity [katex]v[/katex] is constant for the remaining part of the race. |
2 | [katex]10 \, \text{m/s} = 90 \, \text{m} / t_2 [/katex] | Substitute [katex] v = 10 \, \text{m/s} [/katex] and [katex] d_2 = 90 \, \text{m} [/katex]. |
3 | [katex]t_2 = 90 \, \text{m} / 10 \, \text{m/s} [/katex] | Rearrange to solve for [katex] t_2 [/katex]. |
4 | [katex]t_2 = 9 \, \text{s} [/katex] | Solve for [katex] t_2 [/katex]. |
5 | [katex]t_{\text{total}} = t_1 + t_2 = 2 \, \text{s} + 9 \, \text{s} [/katex] | The total time is the sum of the two intervals. |
6 | [katex]t_{\text{total}} = 11 \, \text{s} [/katex] | Total time to run 100 meters. |
# Part (d) Draw the displacement vs time curve for the sprinter.
The displacement vs. time graph would show a parabolic curve for the first 2 seconds and a linear relationship thereafter to indicate constant velocity:
1. From [katex] t = 0 [/katex] to [katex] t = 2 [/katex] seconds, the curve will be a parabola opening upwards.
2. From [katex] t = 2[/katex] seconds to [katex] t = 11 [/katex] seconds, the curve will be a straight line with a constant slope of [katex]10 \, \text{m/s}[/katex].
Just ask: "Help me solve this problem."
Two identical metal balls are being held side by side at the top of a ramp. Alex lets one ball, \( A \), start rolling down the hill. A few seconds later, Alex’s partner, Bob, starts the second ball, \( B \), down the hill by giving it a push. Ball \( B \) rolls down the hill along a line parallel to the path of the first ball and passes it. At the instant ball \( B \) passes ball \( A \):
Can an object’s average velocity equal zero when object’s speed is greater than zero? Explain using the formula for average velocity vs speed.
An object is thrown downward at 23 m/s from the top of a 200 m tall building.
A 1000 kg car is traveling east at 20m/s when it collides perfectly inelastically with a northbound 2000 kg car traveling at 15m/s. If the coefficient of kinetic friction is 0.9, how far, and at what angle do the two cars skid before coming to a stop?
Consider a ball thrown up from the surface of the earth into the air at an angle of \( 30^\circ \) above the horizontal. Air resistance is negligible. The ball’s acceleration just after release is most nearly
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.