0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \( \Delta x = v_{i_x} t \) | Use the horizontal motion formula where \( \Delta x = 32 \, \text{m} \) and solve for \( t \). |
| 2 | \( v_{i_x} = v_i \cos(\theta) \) | Calculate the initial horizontal velocity using the initial velocity and the angle. |
| 3 | \( v_{i_x} = 20 \, \text{m/s} \cdot 0.80 = 16 \, \text{m/s} \) | Substitute \( v_i = 20 \, \text{m/s} \) and \( \cos(37^\circ) = 0.80 \) to find \( v_{i_x} \). |
| 4 | \( 32 \, \text{m} = 16 \, \text{m/s} \cdot t \) | Substitute \( \Delta x = 32 \, \text{m} \) and \( v_{i_x} = 16 \, \text{m/s} \) into the horizontal motion formula. |
| 5 | \( t = \frac{32 \, \text{m}}{16 \, \text{m/s}} \) | Rearrange to solve for \( t \). |
| 6 | \( t = 2 \, \text{s} \) | Calculate the value of \( t \). |
So, the time it takes for the ball to reach the plane of the fence is \( \boxed{2 \, \text{s}} \).
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \( y = v_{i_y} t + \frac{1}{2} a t^2 \) | Use the vertical motion equation to find the height \( y \) at \( t = 2 \, \text{s} \). |
| 2 | \( v_{i_y} = v_i \sin(\theta) \) | Calculate the initial vertical velocity using the initial velocity and the angle. |
| 3 | \( v_{i_y} = 20 \, \text{m/s} \cdot 0.60 = 12 \, \text{m/s} \) | Substitute \( v_i = 20 \, \text{m/s} \) and \( \sin(37^\circ) = 0.60 \) to find \( v_{i_y} \). |
| 4 | \( y = 12 \, \text{m/s} \cdot 2 \, \text{s} + \frac{1}{2} (-9.8 \, \text{m/s}^2) \cdot (2 \, \text{s})^2 \) | Substitute \( t = 2 \, \text{s} \), \( v_{i_y} = 12 \, \text{m/s} \), and \( a = -9.8 \, \text{m/s}^2 \) into the vertical motion formula. |
| 5 | \( y = 24 \, \text{m} – 19.6 \, \text{m} \) | Calculate the height \( y \). |
| 6 | \( y = 4.4 \, \text{m} \) | Determine the final value of \( y \) at \( t = 2 \, \text{s} \). |
| 7 | \( y_{\text{final}} – h_{\text{fence}} = 4.4 \, \text{m} – 2.5 \, \text{m} \) | Compare the calculated height with the fence height (\(2.5 \, \text{m}\)). |
| 8 | \( \Delta h = 1.9 \, \text{m} \) | Determine how far above the top of the fence the ball passes. |
So, the ball will pass \( \boxed{1.9 \, \text{m}} \) above the top of the fence.
Just ask: "Help me solve this problem."
In archery, should the arrow be aimed directly at the target? How should your angle of aim depend on the distance to the target? Explain without using equations.
A projectile is launched at \( 25 \) \( \text{m/s} \) at an angle of \( 45^\circ \). It lands on a slope \( 5 \) \( \text{m} \) below the launch height. On landing, it rebounds vertically with \( 80\% \) of its speed and falls straight down from there. Find the total time from launch to final impact at the base of the slope.
A projectile is launched at \( 25 \) \( \text{m/s} \) at an angle of \( 37^{\circ} \). It lands on a platform that is \( 5.0 \) \( \text{m} \) above the launch height.
An eagle is flying horizontally at \(6 \, \text{m/s}\) with a fish in its claws. It accidentally drops the fish.
A major-league pitcher can throw a baseball in excess of \( 41.0 \, \text{m/s} \). If a ball is thrown horizontally at this speed, how much will it drop by the time it reaches a catcher who is \( 17.0 \, \text{m} \) away from the point of release?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?