AP Physics

Unit 2 - Linear Forces

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part (a) Forces on crate

Step Derivation/Formula Reasoning
1 \[\vec{F}_g = m_c\,\vec{g}\] Weight acts downward; here \(m_c = 900\,\text{kg}\).
2 \[\vec{N}= -\vec{F}_g\] Normal force from bed acts upward, balancing weight (level road, no vertical acceleration).
3 \[\vec{f}_s \text{ (leftward)}\] Static friction on crate points left, supplying the horizontal deceleration so that the crate does not slide.

Part (b) Truck acceleration

Step Derivation/Formula Reasoning
1 \[\Delta x = \frac{v_i + v_x}{2}\,\Delta t\] Constant–acceleration displacement relation.
2 \[55 = \frac{25 + v_x}{2}\,(3.0)\] Substitute \(\Delta x = 55\,\text{m},\ v_i = 25\,\text{m/s},\ \Delta t = 3.0\,\text{s}.\)
3 \[v_x = 11.7\,\text{m/s}\] Solve for final speed after braking distance.
4 \[v_x = v_i + a\,\Delta t\] Linear velocity–time equation.
5 \[11.7 = 25 + a(3.0)\] Insert known values.
6 \[a = -4.4\,\text{m/s}^2\] Negative sign shows acceleration is opposite the motion (deceleration).
7 \[\boxed{\,|a| = 4.4\,\text{m/s}^2\,}\] Requested magnitude.

Part (c) Minimum coefficient of friction

Step Derivation/Formula Reasoning
1 \[\vec{f}_s = m_c\,|a|\] Static friction provides the horizontal net force \(m_c a\).
2 \[f_{s,\max}= \mu_s N = \mu_s m_c g\] Maximum static friction formula with \(N = m_c g\).
3 \[\mu_s m_c g \ge m_c |a|\] No sliding requires static friction capability to exceed demand.
4 \[\mu_{\min}= \frac{|a|}{g}= \frac{4.4}{9.8}=0.45\] Mass cancels; compute numerical value.
5 \[\boxed{\,\mu_{\min}=0.45\;\text{(static)}\,}\] The friction is static because no relative motion occurs.

Part (d) Spring extension while accelerating

Step Derivation/Formula Reasoning
1 \[a = \frac{v_x – v_i}{\Delta t}= \frac{25 – 0}{10}=2.5\,\text{m/s}^2\] Uniform acceleration from rest to \(25\,\text{m/s}\) in \(10\,\text{s}\).
2 \[F_s = m_c a\] Spring force supplies crate’s required horizontal force.
3 \[F_s = kx\] Hooke’s law for spring with constant \(k = 9200\,\text{N/m}\).
4 \[x = \frac{m_c a}{k}= \frac{900(2.5)}{9200}=0.24\,\text{m}\] Solve for extension.
5 \[\boxed{\,x = 0.24\,\text{m}\,}\] Numerical answer for maximum extension during acceleration.

Part (e) Extension at constant speed

Step Derivation/Formula Reasoning
1 \[a = 0\] Constant speed implies zero acceleration.
2 \[F_s = m_c a = 0\Rightarrow x = 0\] No net horizontal force required, so spring force and thus extension become zero.
3 \[\boxed{\,x_{\text{const}} < x_{\text{accel}}\,}\] Extension is less (indeed zero) compared with part (d) when acceleration was present.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

\(4.4\,\text{m/s}^2\)
\(\mu_{\min}=0.45,\,\text{static}\)
\(0.24\,\text{m}\)
\(\text{less than}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

Physics is Hard, But It Doesn't Have to Be

We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher. 

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Feeling uneasy about your next physics test? We help boost grades in 3 lesson or less.

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.