0 attempts
0% avg
UBQ Credits
# (a) Displacement during the first two seconds
The displacement is the area under the velocity-time graph from [katex]t = 0[/katex] to [katex]t = 2[/katex] seconds.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}[/katex] | The graph from [katex]t = 0[/katex] to [katex]t = 2[/katex] forms a right triangle. Calculate its area. |
2 | [katex]\text{Area} = \frac{1}{2} \times 2 \, \text{s} \times 4 \, \text{m/s}[/katex] | Substitute the base (time interval) and height (velocity) into the area formula. |
3 | [katex]\text{Displacement} = 4 \,\text{meters}[/katex] | The area (in square units) represents the player’s displacement in meters. |
# (b) Displacement between [katex]t = 4 \, \text{s}[/katex] and [katex]t = 9 \, \text{s}[/katex]
Calculate the area under the velocity-time graph between [katex]t = 4 \, \text{s}[/katex] and [katex]t = 9 \, \text{s}[/katex].
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]A_{\text{rectangle}} = \text{base} \times \text{height}[/katex] | Calculate the area of the rectangle from [katex]t = 4[/katex] to [katex]t = 8[/katex]. |
2 | [katex]A_{\text{rectangle}} = (8 – 4) \, \text{s} \times 2 \, \text{m/s} = 8 \, \text{meters}[/katex] | Substitute the base (4 seconds) and height (2 m/s) into the equation. |
3 | [katex]A_{\text{triangle}} = \frac{1}{2} \times (9 – 8) \, \text{s} \times 2 \, \text{m/s} = 1 \, \text{meter}[/katex] | Calculate the area of the triangle from [katex]t = 8[/katex] to [katex]t = 9[/katex]. |
4 | [katex]\text{Total displacement} = 8 \, \text{meters} + 1 \, \text{meter} = 9 \, \text{meters}[/katex] | Sum of the rectangle and triangle areas give the total displacement. |
# (c) Displacement between [katex]t = 4 \, \text{s}[/katex] and [katex]t = 10 \, \text{s}[/katex]
Calculate the area under the velocity-time graph between [katex]t = 4 \, \text{s}[/katex] and [katex]t = 10 \, \text{s}[/katex], including the negative area.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]A_{\text{rectangle}} = \text{base} \times \text{height} = 8 \, \text{meters}[/katex] | Area calculated previously for rectangle from [katex]t = 4[/katex] to [katex]t = 8[/katex]. |
2 | [katex]A_{\text{triangle1}} = \frac{1}{2} \times (9 – 8) \, \text{s} \times 2 \, \text{m/s} = 1 \, \text{meter}[/katex] | Area calculated previously for triangle from [katex]t = 8[/katex] to [katex]t = 9[/katex]. |
3 | [katex]A_{\text{triangle2}} = \frac{1}{2} \times (10 – 9) \, \text{s} \times (-2) \, \text{m/s} = -1 \, \text{meter}[/katex] | Calculate the area (negative) for the triangle from [katex]t = 9[/katex] to [katex]t = 10[/katex]. |
4 | [katex]\text{Total displacement} = 8 \, \text{meters} + 1 \, \text{meter} – 1 \, \text{meter} = 8 \, \text{meters}[/katex] | Sum the areas of the rectangle and the two triangles. |
Just ask: "Help me solve this problem."
A cart begins to move from rest on a horizontal track. Which of the following correctly indicates the magnitude of the average velocity of the cart during the interval shown and provides a valid explanation?
Hint: when solving this, its consider that the area of the acceleration vs time graph tells you the change in velocity.
The graph in the figure shows the position of a particle as it travels along the x-axis. At what value of \(t\) is the speed of the particle equal to \(0 \, \text{m/s}\)?
note that the slope of position vs time is velocity. And the graph most closely reemsbles a flat or 0 slope at 3 seconds
The graph above represents the motion of an object traveling in a straight line as a function of time. What is the average speed of the object during the first four seconds? Note the displacemnt from 0 to 4 seconds is 2 meters
(a) 4 m
(b) 9 m
(c) 8 m
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.