0 attempts
0% avg
UBQ Credits
# (a) Displacement during the first two seconds
The displacement is the area under the velocity-time graph from [katex]t = 0[/katex] to [katex]t = 2[/katex] seconds.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}[/katex] | The graph from [katex]t = 0[/katex] to [katex]t = 2[/katex] forms a right triangle. Calculate its area. |
2 | [katex]\text{Area} = \frac{1}{2} \times 2 \, \text{s} \times 4 \, \text{m/s}[/katex] | Substitute the base (time interval) and height (velocity) into the area formula. |
3 | [katex]\text{Displacement} = 4 \,\text{meters}[/katex] | The area (in square units) represents the player’s displacement in meters. |
# (b) Displacement between [katex]t = 4 \, \text{s}[/katex] and [katex]t = 9 \, \text{s}[/katex]
Calculate the area under the velocity-time graph between [katex]t = 4 \, \text{s}[/katex] and [katex]t = 9 \, \text{s}[/katex].
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]A_{\text{rectangle}} = \text{base} \times \text{height}[/katex] | Calculate the area of the rectangle from [katex]t = 4[/katex] to [katex]t = 8[/katex]. |
2 | [katex]A_{\text{rectangle}} = (8 – 4) \, \text{s} \times 2 \, \text{m/s} = 8 \, \text{meters}[/katex] | Substitute the base (4 seconds) and height (2 m/s) into the equation. |
3 | [katex]A_{\text{triangle}} = \frac{1}{2} \times (9 – 8) \, \text{s} \times 2 \, \text{m/s} = 1 \, \text{meter}[/katex] | Calculate the area of the triangle from [katex]t = 8[/katex] to [katex]t = 9[/katex]. |
4 | [katex]\text{Total displacement} = 8 \, \text{meters} + 1 \, \text{meter} = 9 \, \text{meters}[/katex] | Sum of the rectangle and triangle areas give the total displacement. |
# (c) Displacement between [katex]t = 4 \, \text{s}[/katex] and [katex]t = 10 \, \text{s}[/katex]
Calculate the area under the velocity-time graph between [katex]t = 4 \, \text{s}[/katex] and [katex]t = 10 \, \text{s}[/katex], including the negative area.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]A_{\text{rectangle}} = \text{base} \times \text{height} = 8 \, \text{meters}[/katex] | Area calculated previously for rectangle from [katex]t = 4[/katex] to [katex]t = 8[/katex]. |
2 | [katex]A_{\text{triangle1}} = \frac{1}{2} \times (9 – 8) \, \text{s} \times 2 \, \text{m/s} = 1 \, \text{meter}[/katex] | Area calculated previously for triangle from [katex]t = 8[/katex] to [katex]t = 9[/katex]. |
3 | [katex]A_{\text{triangle2}} = \frac{1}{2} \times (10 – 9) \, \text{s} \times (-2) \, \text{m/s} = -1 \, \text{meter}[/katex] | Calculate the area (negative) for the triangle from [katex]t = 9[/katex] to [katex]t = 10[/katex]. |
4 | [katex]\text{Total displacement} = 8 \, \text{meters} + 1 \, \text{meter} – 1 \, \text{meter} = 8 \, \text{meters}[/katex] | Sum the areas of the rectangle and the two triangles. |
Just ask: "Help me solve this problem."
A car moves forward at a steady \( 10 \) \( \text{m/s} \) for \( 5 \) \( \text{s} \). The driver slams the brakes and brings it to rest in \( 2 \) \( \text{s} \). Without waiting, the driver immediately accelerates backward (negative velocity) for \( 3 \) \( \text{s} \) until reaching \( 8 \) \( \text{m/s} \) in reverse. Draw the velocity vs. time graph.
You throw a ball straight upward. It leaves your hand at \( 20 \) \( \text{m/s} \) and slows at a steady rate until it stops at the peak. The ball then comes back down, speeding up steadily until it hits the ground with the same speed it left your hand. Draw the velocity vs. time graph or explain it in terms of functions.
The graph shows the acceleration as a function of time for an object that is at rest at time \( t = 0 \) \( \text{s} \). The distance traveled by the object between \( 0 \) and \( 2 \) \( \text{s} \) is most nearly
The graph below is a plot of position versus time. For which labeled region is the velocity positive and the acceleration negative?
A disk is initially rotating counterclockwise around a fixed axis with angular speed \( \omega_0 \). At time \( t = 0 \), the two forces shown in the figure above are exerted on the disk. If counterclockwise is positive, which of the following could show the angular velocity of the disk as a function of time?
(a) 4 m
(b) 9 m
(c) 8 m
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.