0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | $$F_{\parallel} = F\cos(\theta)$$ | The horizontal force \( F \) is resolved into a component along the inclined plane. The component along the plane is given by \( F\cos(\theta) \). |
2 | $$F_{g\,\parallel} = mg\sin(\theta)$$ | The gravitational force has a component down the incline given by \( mg\sin(\theta) \). |
3 | $$N = mg\cos(\theta)+ F\sin(\theta)$$ | The normal force \( N \) is found by resolving forces perpendicular to the incline. Gravity gives \( mg\cos(\theta) \) and the horizontal force contributes \( F\sin(\theta) \) pushing the block into the plane. |
4 | $$F_{f} = \mu N = \mu\left(mg\cos(\theta)+ F\sin(\theta)\right)$$ | The frictional force is given by the coefficient of friction \( \mu \) times the normal force. |
5 | $$m\,a = F\cos(\theta)- mg\sin(\theta)- \mu\left(mg\cos(\theta)+ F\sin(\theta)\right)$$ | Applying Newton’s second law along the incline, the net force is the sum of the component of \( F \) along the plane minus both the gravitational and frictional forces. |
6 | $$a = \frac{F\cos(\theta)- mg\sin(\theta)- \mu\left(mg\cos(\theta)+ F\sin(\theta)\right)}{m}$$ | This is the final expression for the block’s acceleration \( a \) up the incline in terms of \( m,\,\theta,\,\mu,\,F, \) and \( g \). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | $$0 = F\cos(\theta)- mg\sin(\theta)- \mu\left(mg\cos(\theta)+ F\sin(\theta)\right)$$ | For the block to slide up the plane with constant velocity, the acceleration must be zero. Hence the net force along the incline is zero. |
2 | $$F\cos(\theta)- \mu F\sin(\theta) = mg\sin(\theta)+ \mu mg\cos(\theta)$$ | Rearrange the equation by grouping the terms involving \( F \) on the left and the gravitational terms on the right. |
3 | $$F \left(\cos(\theta)- \mu \sin(\theta)\right) = mg\left(\sin(\theta)+ \mu\cos(\theta)\right)$$ | Factor out \( F \) on the left-hand side and \( mg \) on the right-hand side for clarity. |
4 | $$F = \frac{mg\left(\sin(\theta)+ \mu\cos(\theta)\right)}{\cos(\theta)- \mu\sin(\theta)}$$ | Solve the equation for \( F \) by dividing both sides by \(\cos(\theta)- \mu \sin(\theta)\). |
5 | $$\cos(\theta)- \mu\sin(\theta)> 0 \quad \Longrightarrow \quad \tan(\theta) < \frac{1}{\mu}$$ | For \( F \) to be physically meaningful (i.e., a positive real number), the denominator must be positive. Rearranging the inequality yields the condition \( \tan(\theta) < \frac{1}{\mu} \). |
6 | $$\boxed{F = \frac{mg\left(\sin(\theta)+ \mu\cos(\theta)\right)}{\cos(\theta)- \mu\sin(\theta)}}$$ | This is the final expression for the magnitude of the applied horizontal force required to make the block slide with a constant velocity, including the physical condition on \( \theta \) and \( \mu \). |
Just ask: "Help me solve this problem."
An elevator carrying a person of mass \( m \) is moving upward and slowing down. How does the magnitude \( F \) of the force exerted on the person by the elevator floor compare with the magnitude \( mg \) of the gravitational force?
List at least 2 everyday forces that are not conservative, and explain why they aren’t.
A 1100 kg car accelerates from 32 m/s to 8.0 m/s in 4.0 sec. What amount of force was needed to slow it down?
A truck of mass 3500 kg hits the back of a small car of mass 1400 kg. Which car exerted more force on the other and why?
Two objects, \( A \) and \( B \), move toward one another. Object \( A \) has twice the mass and half the speed of object \( B \). Which of the following describes the forces the objects exert on each other when they collide and provides the best explanation?
a) \( a = \frac{F (\cos \theta – \mu \sin \theta) – mg (\mu \cos \theta + \sin \theta)}{m} \)
b) \( F = \frac{\mu m g \cos \theta + \mu F \sin \theta + m g \sin \theta}{\cos \theta} \)
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.