0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ \frac{1}{2}m v_{0}^{2} = m g \Delta x \sin(34^\circ) \] | This is the energy conservation for a frictionless slide where all the gravitational potential energy \(m g \Delta x \sin(34^\circ)\) is converted into kinetic energy \(\frac{1}{2}m v_{0}^{2}\) at the bottom. |
2 | \[ v_{0} = \sqrt{2g \Delta x \sin(34^\circ)} \] | Solve for the frictionless final speed \(v_{0}\) by isolating it in the energy equation. |
3 | \[ \frac{1}{2}m v_{x}^{2} = m g \Delta x \sin(34^\circ) – \mu \; m g \Delta x \cos(34^\circ) \] | For a slide with kinetic friction, the work done by friction \(\mu m g \Delta x \cos(34^\circ)\) is subtracted from the available gravitational potential energy. |
4 | \[ v_{x} = \frac{1}{2}v_{0} \] | It is given that the child’s speed at the bottom with friction is exactly half the frictionless speed. |
5 | \[ \frac{1}{2}m \left(\frac{1}{2}v_{0}\right)^2 = m g \Delta x \sin(34^\circ) – \mu \; m g \Delta x \cos(34^\circ) \] | Substitute \(v_{x} = \frac{1}{2}v_{0}\) into the energy equation with friction. |
6 | \[ \frac{1}{2} \left(\frac{1}{2}v_{0}\right)^2 = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Cancel the mass \(m\) from both sides since it appears throughout. |
7 | \[ \frac{1}{2} \left(\frac{1}{4}v_{0}^2\right) = \frac{1}{8}v_{0}^2 = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Simplify the left side by computing \(\left(\frac{1}{2}\right)^2 = \frac{1}{4}\) and then multiplying by \(\frac{1}{2}\). |
8 | \[ \text{Since} \; \frac{1}{2}v_{0}^2 = g \Delta x \sin(34^\circ), \; \text{we have} \; \frac{1}{8}v_{0}^2 = \frac{1}{4}g \Delta x \sin(34^\circ) \] | Replace \(\frac{1}{8}v_{0}^2\) using the frictionless energy equation for consistency. |
9 | \[ \frac{1}{4}g \Delta x \sin(34^\circ) = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Equate the expression obtained from energy with friction to the simplified form of frictionless energy. |
10 | \[ \frac{1}{4}\sin(34^\circ) = \sin(34^\circ) – \mu \cos(34^\circ) \] | Cancel \(g \Delta x\) from both sides since they are nonzero. |
11 | \[ \sin(34^\circ) – \frac{1}{4}\sin(34^\circ) = \mu \cos(34^\circ) \] | Simplify the right side by subtracting \(\frac{1}{4}\sin(34^\circ)\) from \(\sin(34^\circ)\). |
12 | \[ \frac{3}{4}\sin(34^\circ) = \mu \cos(34^\circ) \] | This gives the relationship that relates \(\mu\) to the sine and cosine of \(34^\circ\). |
13 | \[ \mu = \frac{\frac{3}{4}\sin(34^\circ)}{\cos(34^\circ)} = \frac{3}{4}\tan(34^\circ) \] | Solve for \(\mu\) by dividing both sides by \(\cos(34^\circ)\). |
14 | \[ \boxed{\mu \approx 0.51} \] | Substitute \(\tan(34^\circ) \approx 0.67\) to get a numerical value \(\mu \approx \frac{3}{4} \times 0.67 \approx 0.50-0.51\). This is the coefficient of kinetic friction. |
Just ask: "Help me solve this problem."
Two closed containers look the same, but one is packed with lead and the other with a few feathers. How could you determine which has more mass if you and the containers were orbiting in a weightless condition in outer space?
A crane’s trolley at point \( P \) moves for a few seconds to the right with constant acceleration, and the \( 870 \, \text{kg} \) load hangs on a light cable at a \( 5^\circ \) angle to the vertical as shown. What is the acceleration of the trolley and load?
In the diagram above block A has a mass of 3.2 kg and block B a mass of 2.4 kg. The pulley is frictionless and has no mass.
A westward–moving car is changing its speed. The net force on the car ____.
Block m1 is stacked on top of block m2. Block m2 is connected by a light cord to block m3, which is pulled along a frictionless surface with a force F as shown in the diagram above. Block m1 is accelerated at the same rate as block m2 because of the frictional forces between the two blocks. If all three blocks have the same mass m, what is the minimum coefficient of static friction between block m1 and block m2?
\(\boxed{\mu \approx 0.51}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.