0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ \frac{1}{2}m v_{0}^{2} = m g \Delta x \sin(34^\circ) \] | This is the energy conservation for a frictionless slide where all the gravitational potential energy \(m g \Delta x \sin(34^\circ)\) is converted into kinetic energy \(\frac{1}{2}m v_{0}^{2}\) at the bottom. |
| 2 | \[ v_{0} = \sqrt{2g \Delta x \sin(34^\circ)} \] | Solve for the frictionless final speed \(v_{0}\) by isolating it in the energy equation. |
| 3 | \[ \frac{1}{2}m v_{x}^{2} = m g \Delta x \sin(34^\circ) – \mu \; m g \Delta x \cos(34^\circ) \] | For a slide with kinetic friction, the work done by friction \(\mu m g \Delta x \cos(34^\circ)\) is subtracted from the available gravitational potential energy. |
| 4 | \[ v_{x} = \frac{1}{2}v_{0} \] | It is given that the child’s speed at the bottom with friction is exactly half the frictionless speed. |
| 5 | \[ \frac{1}{2}m \left(\frac{1}{2}v_{0}\right)^2 = m g \Delta x \sin(34^\circ) – \mu \; m g \Delta x \cos(34^\circ) \] | Substitute \(v_{x} = \frac{1}{2}v_{0}\) into the energy equation with friction. |
| 6 | \[ \frac{1}{2} \left(\frac{1}{2}v_{0}\right)^2 = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Cancel the mass \(m\) from both sides since it appears throughout. |
| 7 | \[ \frac{1}{2} \left(\frac{1}{4}v_{0}^2\right) = \frac{1}{8}v_{0}^2 = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Simplify the left side by computing \(\left(\frac{1}{2}\right)^2 = \frac{1}{4}\) and then multiplying by \(\frac{1}{2}\). |
| 8 | \[ \text{Since} \; \frac{1}{2}v_{0}^2 = g \Delta x \sin(34^\circ), \; \text{we have} \; \frac{1}{8}v_{0}^2 = \frac{1}{4}g \Delta x \sin(34^\circ) \] | Replace \(\frac{1}{8}v_{0}^2\) using the frictionless energy equation for consistency. |
| 9 | \[ \frac{1}{4}g \Delta x \sin(34^\circ) = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Equate the expression obtained from energy with friction to the simplified form of frictionless energy. |
| 10 | \[ \frac{1}{4}\sin(34^\circ) = \sin(34^\circ) – \mu \cos(34^\circ) \] | Cancel \(g \Delta x\) from both sides since they are nonzero. |
| 11 | \[ \sin(34^\circ) – \frac{1}{4}\sin(34^\circ) = \mu \cos(34^\circ) \] | Simplify the right side by subtracting \(\frac{1}{4}\sin(34^\circ)\) from \(\sin(34^\circ)\). |
| 12 | \[ \frac{3}{4}\sin(34^\circ) = \mu \cos(34^\circ) \] | This gives the relationship that relates \(\mu\) to the sine and cosine of \(34^\circ\). |
| 13 | \[ \mu = \frac{\frac{3}{4}\sin(34^\circ)}{\cos(34^\circ)} = \frac{3}{4}\tan(34^\circ) \] | Solve for \(\mu\) by dividing both sides by \(\cos(34^\circ)\). |
| 14 | \[ \boxed{\mu \approx 0.51} \] | Substitute \(\tan(34^\circ) \approx 0.67\) to get a numerical value \(\mu \approx \frac{3}{4} \times 0.67 \approx 0.50-0.51\). This is the coefficient of kinetic friction. |
Just ask: "Help me solve this problem."

The elliptical orbit of a comet is shown above. Positions \(1\) and \(2\) are, respectively, the farthest and nearest positions to the Sun, and at position \(1\) the distance from the comet to the Sun is \(10\) times that at position \(2\). What is the ratio \(\dfrac{F_1}{F_2}\), the force on the comet at position \(1\) to the force on the comet at position \(2\)?

A traffic light hangs from a pole as shown in the diagram. The uniform aluminum pole AB is of length \( 7.20 \) \( \text{m} \) and has a mass of \( 12.0 \) \( \text{kg} \). The mass of the traffic light is \( 21.5 \) \( \text{kg} \). The point C is located \( 3.80 \) \( \text{m} \) vertically above the pivot A. A massless horizontal cable CD is attached at C and connects to the pole at point D, where the pole makes an angle of \( 37^{\circ} \) with the cable.
A person with a weight of \( 600 \) \( \text{N} \) stands on a scale in an elevator. What is the acceleration of the elevator when the scale reads \( 900 \) \( \text{N} \)?
A skydiver reaches a terminal velocity of \(55.0\, \mathrm{m/s}\). At terminal velocity, the skydiver no longer accelerates. The mass of the skydiver and her equipment is \(87.0\, \mathrm{kg}\). What is the force of friction acting on her?

Four blocks of masses \( 20 \, \text{kg}, \, 30 \, \text{kg}, \, 40 \, \text{kg}, \, \text{and} \, 50 \, \text{kg} \) are stacked on top of one another in an elevator in order of decreasing mass with the lightest mass on the top of the stack. The elevator moves downward with an acceleration of \( 3.2 \, \text{m/s}^2 \). Find the contact force between the \( 30 \, \text{kg} \) and \( 40 \, \text{kg} \) masses.
\(\boxed{\mu \approx 0.51}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?