0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ \frac{1}{2}m v_{0}^{2} = m g \Delta x \sin(34^\circ) \] | This is the energy conservation for a frictionless slide where all the gravitational potential energy \(m g \Delta x \sin(34^\circ)\) is converted into kinetic energy \(\frac{1}{2}m v_{0}^{2}\) at the bottom. |
2 | \[ v_{0} = \sqrt{2g \Delta x \sin(34^\circ)} \] | Solve for the frictionless final speed \(v_{0}\) by isolating it in the energy equation. |
3 | \[ \frac{1}{2}m v_{x}^{2} = m g \Delta x \sin(34^\circ) – \mu \; m g \Delta x \cos(34^\circ) \] | For a slide with kinetic friction, the work done by friction \(\mu m g \Delta x \cos(34^\circ)\) is subtracted from the available gravitational potential energy. |
4 | \[ v_{x} = \frac{1}{2}v_{0} \] | It is given that the child’s speed at the bottom with friction is exactly half the frictionless speed. |
5 | \[ \frac{1}{2}m \left(\frac{1}{2}v_{0}\right)^2 = m g \Delta x \sin(34^\circ) – \mu \; m g \Delta x \cos(34^\circ) \] | Substitute \(v_{x} = \frac{1}{2}v_{0}\) into the energy equation with friction. |
6 | \[ \frac{1}{2} \left(\frac{1}{2}v_{0}\right)^2 = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Cancel the mass \(m\) from both sides since it appears throughout. |
7 | \[ \frac{1}{2} \left(\frac{1}{4}v_{0}^2\right) = \frac{1}{8}v_{0}^2 = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Simplify the left side by computing \(\left(\frac{1}{2}\right)^2 = \frac{1}{4}\) and then multiplying by \(\frac{1}{2}\). |
8 | \[ \text{Since} \; \frac{1}{2}v_{0}^2 = g \Delta x \sin(34^\circ), \; \text{we have} \; \frac{1}{8}v_{0}^2 = \frac{1}{4}g \Delta x \sin(34^\circ) \] | Replace \(\frac{1}{8}v_{0}^2\) using the frictionless energy equation for consistency. |
9 | \[ \frac{1}{4}g \Delta x \sin(34^\circ) = g \Delta x \sin(34^\circ) – \mu \; g \Delta x \cos(34^\circ) \] | Equate the expression obtained from energy with friction to the simplified form of frictionless energy. |
10 | \[ \frac{1}{4}\sin(34^\circ) = \sin(34^\circ) – \mu \cos(34^\circ) \] | Cancel \(g \Delta x\) from both sides since they are nonzero. |
11 | \[ \sin(34^\circ) – \frac{1}{4}\sin(34^\circ) = \mu \cos(34^\circ) \] | Simplify the right side by subtracting \(\frac{1}{4}\sin(34^\circ)\) from \(\sin(34^\circ)\). |
12 | \[ \frac{3}{4}\sin(34^\circ) = \mu \cos(34^\circ) \] | This gives the relationship that relates \(\mu\) to the sine and cosine of \(34^\circ\). |
13 | \[ \mu = \frac{\frac{3}{4}\sin(34^\circ)}{\cos(34^\circ)} = \frac{3}{4}\tan(34^\circ) \] | Solve for \(\mu\) by dividing both sides by \(\cos(34^\circ)\). |
14 | \[ \boxed{\mu \approx 0.51} \] | Substitute \(\tan(34^\circ) \approx 0.67\) to get a numerical value \(\mu \approx \frac{3}{4} \times 0.67 \approx 0.50-0.51\). This is the coefficient of kinetic friction. |
Just ask: "Help me solve this problem."
Which of the following best explains why astronauts experience weightlessness while orbiting the earth?
Two students push a \(1750\, \mathrm{kg}\) car with a force of \(758\, \mathrm{N}\) along a perfectly level road at a constant velocity of \(4.00\, \mathrm{m/s}\). Find the force of friction.
A person whose weight is \(4.92 \times 10^2 \, \text{N}\) is being pulled up vertically by a rope from the bottom of a cave that is \(35.2 \, \text{m}\) deep. The maximum tension that the rope can withstand without breaking is \(592 \, \text{N}\). What is the shortest time, starting from rest, in which the person can be brought out of the cave?
Two satellites are in circular orbits around Earth. Satellite A has speed \(v_A\). Satellite B has an orbital radius nine times that of satellite A. What is the speed of satellite B?
A westward–moving car is changing its speed. The net force on the car ____.
\(\boxed{\mu \approx 0.51}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?