0 attempts
0% avg
To analyze this scenario, we will use the principles of fluid dynamics, specifically Bernoulli’s principle, which relates the speed of a fluid to its pressure:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \(P + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}\) | Apply Bernoulli’s principle, which states that the sum of the pressure energy, kinetic energy, and potential energy per unit volume remains constant along a streamline. |
| 2 | \(\Delta h = h_B – h_A\) | Identify that the liquid height difference (\(\Delta h\)) in the vertical branches indicates a difference in pressure between points A and B. |
| 3 | \(P_A + \rho g h_A = P_B + \rho g h_B\) | The liquid column heights in branches A and B equilibrate the pressure differences, where \(P_A\) and \(P_B\) are the pressures at points A and B. |
| 4 | \(\Delta P = \rho g \Delta h\) | Express the difference in pressure (\(\Delta P\)) in terms of the height difference. This implies that a lower pressure exists where the liquid height is greater. |
| 5 | \(\frac{1}{2} \rho v_A^2 + P_A = \frac{1}{2} \rho v_B^2 + P_B\) | Since the tube is horizontal, apply Bernoulli’s equation for points A and B, considering equal height, where \(v_A\) and \(v_B\) are velocities at A and B. |
| 6 | \(P_B < P_A \) implies \(v_B > v_A\) | The presence of a higher liquid level at B suggests a lower pressure at B, indicating that the air speed (\(v_B\)) above B is greater. |
| 7 | \(\text{Narrower tube} \Rightarrow \text{higher speed (continuity)}\) | The continuity equation implies \(A_A v_A = A_B v_B\). If \(v_B > v_A\), then \(A_B < A_A\), indicating the section is narrower. |
| 8 | (c) The tube is narrower, and the air speed is greater above section B. | The correct description is a narrower section at B with greater speed due to the observed lower pressure (higher liquid level). |
Answer: (c) The tube is narrower, and the air speed is greater above section B.
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
When the button of a trash compactor is pushed, a force of \( 350 \) \( \text{N} \) pushes down on a \( 1.3 \) \( \text{cm}^2 \) input piston, creating a force of \( 22,076 \) \( \text{N} \) to crush the trash. What is the area of the piston that crushes the trash?
Water circulates throughout a house in a hot water heating system. If the water is pumped at a speed of \( 0.5 \) \( \frac{\text{m}}{\text{s}} \) through a \( 2 \) \( \text{cm} \) diameter pipe in the basement under a pressure of \( 3 \) \( \text{atm} \), what will be the flow speed and pressure in a \( 1.3 \) \( \text{cm} \) diameter pipe on the second floor \( 5 \) \( \text{m} \) above?
Diamond has a density of \( 3500 \) \( \text{kg/m}^3 \). During a physics lab, a diamond drops out of Virginia’s necklace and falls into her graduated cylinder filled with \( 5.00 \times 10^{-5} \) \( \text{m}^3 \) of water. This causes the water level to rise to the \( 5.05 \times 10^{-5} \) \( \text{m}^3 \) mark. What is the mass of Virginia’s diamond?
Two objects labeled K and L have equal mass but densities \( 0.95D_o \) and \( D_o \), respectively. Each of these objects floats after being thrown into a deep swimming pool. Which is true about the buoyant forces acting on these objects?
The large piston in a hydraulic lift has a radius of \( 250 \) \( \text{cm}^2 \). What force must be applied to the small piston with a radius of \( 25 \) \( \text{cm}^2 \) in order to raise a car of mass \( 1500 \) \( \text{kg} \)?
The experimental diving rig is lowered from rest at the ocean’s surface and reaches a maximum depth of \(80\) \(\text{m}\). Initially it accelerates downward at a rate of \(0.10\) \(\text{m/s}^2\) until it reaches a speed of \(2.0\) \(\text{m/s}\), which then remains constant. During the descent, the pressure inside the bell remains constant at \(1\) atmosphere. The top of the bell has a cross-sectional area \(A = 9.0\) \(\text{m}^2\). The density of seawater is \(1025\) \(\text{kg/m}^3\).
A solid plastic cube with uniform density (side length = \(0.5\) \(\text{m}\)) of mass \(100\) \(\text{kg}\) is placed in a vat of fluid whose density is \(1200\) \(\text{kg/m}^3\). What fraction of the cube’s volume floats above the surface of the fluid?
How large must a heating duct be if air moving \( 3 \ \frac{\text{m}}{\text{s}} \) along it can replenish the air in a room of \( 300 \ \text{m}^3 \) volume every \( 15 \) minutes? Assume the air’s density remains constant.

Three identical reservoirs, \(A\), \(B\), and \(C\), are represented above, each with a small pipe where water exits horizontally. The pipes are set at the same height above a pool of water. The water in the reservoirs is kept at the levels shown. Which of the following correctly ranks the horizontal distances \( d \) that the streams of water travel before hitting the surface of the pool?
A cube of unknown material and uniform density floats in a container of water with \(60\%\) of its volume submerged. If this same cube were placed in a container of oil with density \(800\) \(\text{kg/m}^3\), what portion of the cube’s volume would be submerged while floating?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?